The CaM kinase II hypothesis for the storage of synaptic memory

[1]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[2]  T. Tsumoto,et al.  Effects of an inhibitor for calcium/calmodulin-dependent protein phosphatase, calcineurin, on induction of long-term potentiation in rat visual cortex , 1994, Neuroscience Research.

[3]  Lubert Stryer,et al.  Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals , 1994, Neuron.

[4]  Alcino J. Silva,et al.  Modified hippocampal long-term potentiation in PKCγ-mutant mice , 1993, Cell.

[5]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[6]  J. Sweatt,et al.  NMDA Receptor Activation Increases Cyclic AMP in Area CA1 of the Hippocampus via Calcium/Calmodulin Stimulation of Adenylyl Cyclase , 1993, Journal of neurochemistry.

[7]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[8]  M. Kennedy The postsynaptic density , 1993, Current Opinion in Neurobiology.

[9]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[10]  E. Kandel,et al.  Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. , 1993, Science.

[11]  M. Bear,et al.  Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. , 1993, Science.

[12]  R. Huganir,et al.  The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA selective subunits , 1993, Neuron.

[13]  D. Muller,et al.  Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. , 1993, The Journal of biological chemistry.

[14]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[15]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[16]  Ralph J. Greenspan,et al.  Inhibition of calcium/calmodulin-dependent protein kinase in drosophila disrupts behavioral plasticity , 1993, Neuron.

[17]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[18]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[19]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[20]  E. Kandel,et al.  Inhibitors of protein and RNA synthesis block structural changes that accompany long-term heterosynaptic plasticity in Aplysia , 1992, Neuron.

[21]  Y. Ben-Ari,et al.  Protein kinase C modulation of NMDA currents: an important link for LTP induction , 1992, Trends in Neurosciences.

[22]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[23]  Alcino J. Silva,et al.  Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[24]  H. Schulman,et al.  Calmodulin Trapping by Calcium-Calmodulin-Dependent Protein Kinase , 1992, Science.

[25]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[26]  R. Huganir,et al.  Biochemical Characterization and Localization of a Non‐N‐Methyl‐D‐Aspartate Glutamate Receptor in Rat Brain , 1992, Journal of neurochemistry.

[27]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[28]  H. Schulman,et al.  Neuronal Ca2+/calmodulin-dependent protein kinases. , 1992, Annual review of biochemistry.

[29]  S. J. Chen,et al.  Persistent protein kinase activation in the maintenance phase of long-term potentiation. , 1991, The Journal of biological chemistry.

[30]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[31]  T Yamauchi,et al.  Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy , 1991, The Journal of cell biology.

[32]  S. Heinemann,et al.  The characterization and localization of the glutamate receptor subunit GluR1 in the rat brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  H. Schulman,et al.  Activation of multifunctional Ca2+/calmodulin-dependent kinase in intact hippocampal slices , 1991, Neuron.

[34]  H. Hidaka,et al.  Effects of KN-62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, on long-term potentiation in the rat hippocampus , 1991, Neuroscience Letters.

[35]  C. Stevens,et al.  Presynaptic mechanism for long-term potentiation in the hippocampus , 1990, Nature.

[36]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[37]  D. Tank,et al.  Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites , 1990, Nature.

[38]  H. Schulman,et al.  Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+ independent for functional studies. , 1990, Biochemistry.

[39]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[40]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[41]  Roberto Malinow,et al.  Persistent protein kinase activity underlying long-term potentiation , 1988, Nature.

[42]  Stephen G. Miller,et al.  Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity , 1988, Neuron.

[43]  R. Nicoll,et al.  NMDA application potentiates synaptic transmission in the hippocampus , 1988, Nature.

[44]  M. Kennedy,et al.  Regulation of brain Type II Ca 2+ calmodulin -dependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch , 1986, Cell.

[45]  J. H. Schwartz,et al.  Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons , 1985, The Journal of cell biology.

[46]  P. Greengard,et al.  Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum. , 1985, The Journal of biological chemistry.

[47]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[48]  B. McEwen,et al.  Temporal Characteristics of Amnesia induced by Protein Synthesis Inhibitor: Determination by Shock Level , 1970, Nature.