Morphological and transcriptomic analyses of stem cell-derived cortical neurons reveal mechanisms underlying synaptic dysfunction in schizophrenia

[1]  A. Kathuria,et al.  Disease-specific differences in gene expression, mitochondrial function and mitochondria-endoplasmic reticulum interactions in iPSC-derived cerebral organoids and cortical neurons in schizophrenia and bipolar disorder , 2023, Discover Mental Health.

[2]  A. Takata,et al.  The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research , 2023, Molecular Psychiatry.

[3]  Shi-Yan Ng,et al.  Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A , 2022, Schizophrenia.

[4]  Shani Stern,et al.  Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview , 2022, Schizophrenia Research.

[5]  ChangHui Pak,et al.  Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models , 2022, Schizophrenia Research.

[6]  S. Baron-Cohen,et al.  Cell line specific alterations in genes associated with dopamine metabolism and signaling in midbrain dopaminergic neurons derived from 22q11.2 deletion carriers with elevated dopamine synthesis capacity , 2022, Schizophrenia Research.

[7]  Michael F. Green,et al.  Mapping genomic loci implicates genes and synaptic biology in schizophrenia , 2022, Nature.

[8]  S. Gabriel,et al.  Rare coding variants in ten genes confer substantial risk for schizophrenia , 2022, Nature.

[9]  J. Duan,et al.  Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells , 2022, Schizophrenia Research.

[10]  A. Vallée,et al.  Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway , 2022, International journal of molecular sciences.

[11]  J. Tiihonen,et al.  The iPSC perspective on schizophrenia , 2021, Trends in Neurosciences.

[12]  D. Çolak,et al.  The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors , 2021, Translational Psychiatry.

[13]  S. Djurovic,et al.  Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through cAMP/PKA pathway , 2021, bioRxiv.

[14]  D. O’Regan,et al.  The relationship between synaptic density marker SV2A, glutamate and N-acetyl aspartate levels in healthy volunteers and schizophrenia: a multimodal PET and magnetic resonance spectroscopy brain imaging study , 2021, Translational Psychiatry.

[15]  E. Zackai,et al.  Association of Mitochondrial Biogenesis With Variable Penetrance of Schizophrenia. , 2021, JAMA psychiatry.

[16]  D. Lewis,et al.  Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex , 2020, Neuroscience.

[17]  B. Mowry,et al.  Neurexins in autism and schizophrenia—a review of patient mutations, mouse models and potential future directions , 2020, Molecular Psychiatry.

[18]  Eric E. Bardes,et al.  Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons , 2020, Proceedings of the National Academy of Sciences.

[19]  Richard M. Lipkin,et al.  Computational modeling of excitatory/inhibitory balance impairments in schizophrenia , 2020, Schizophrenia Research.

[20]  B. Cohen,et al.  Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell-Derived Cerebral Organoids in Schizophrenia. , 2020, JAMA psychiatry.

[21]  O. Howes,et al.  Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats , 2020, Nature Communications.

[22]  J. Réthelyi,et al.  Investigation of de novo mutations in a schizophrenia case-parent trio by induced pluripotent stem cell-based in vitro disease modeling: convergence of schizophrenia- and autism-related cellular phenotypes , 2020, Stem cell research & therapy.

[23]  B. Cohen,et al.  Synaptic deficits in iPSC-derived cortical interneurons in schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine , 2019, Translational Psychiatry.

[24]  A. Falk,et al.  Stem cell models of schizophrenia, what have we learned and what is the potential? , 2019, Schizophrenia Research.

[25]  R. Kahn,et al.  Synapse Pathology in Schizophrenia: A Meta-analysis of Postsynaptic Elements in Postmortem Brain Studies , 2019, Schizophrenia bulletin.

[26]  F. Gage,et al.  Modeling neuropsychiatric disorders using human induced pluripotent stem cells , 2019, Protein & Cell.

[27]  Daniel R Weinberger,et al.  Thinking About Schizophrenia in an Era of Genomic Medicine. , 2019, The American journal of psychiatry.

[28]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[29]  M. Gerstein,et al.  Transcriptome and epigenome landscape of human cortical development modeled in organoids , 2018, Science.

[30]  D. Spengler,et al.  Tracing Early Neurodevelopment in Schizophrenia with Induced Pluripotent Stem Cells , 2018, Cells.

[31]  Emily E. Burke,et al.  Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs , 2018, bioRxiv.

[32]  P. Penzes,et al.  Dendritic structural plasticity and neuropsychiatric disease , 2018, Nature Reviews Neuroscience.

[33]  I. Weiner,et al.  Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder , 2018, Schizophrenia bulletin.

[34]  G. Ming,et al.  Synaptic dysfunction in complex psychiatric disorders: from genetics to mechanisms , 2018, Genome Medicine.

[35]  F. Gage,et al.  Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward , 2018, Genome Medicine.

[36]  D. Weinberger,et al.  Genetic insights into the neurodevelopmental origins of schizophrenia , 2017, Nature Reviews Neuroscience.

[37]  D. Weinberger Future of Days Past: Neurodevelopment and Schizophrenia. , 2017, Schizophrenia bulletin.

[38]  J. Coyle,et al.  Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[39]  R. Roberts Postmortem studies on mitochondria in schizophrenia , 2017, Schizophrenia Research.

[40]  D. Ben-Shachar Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target , 2017, Schizophrenia Research.

[41]  A. Sawa,et al.  Clozapine as a Model for Antipsychotic Development , 2017, Neurotherapeutics.

[42]  A. Sampson,et al.  Selective Loss of Smaller Spines in Schizophrenia. , 2017, The American journal of psychiatry.

[43]  Rakesh Karmacharya,et al.  Stem cell-derived neurons in the development of targeted treatment for schizophrenia and bipolar disorder. , 2017, Pharmacogenomics.

[44]  K. Fish,et al.  Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex , 2017, Proceedings of the National Academy of Sciences.

[45]  M. Cuénod,et al.  Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? , 2016, Schizophrenia Research.

[46]  Rakesh Karmacharya,et al.  Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells , 2016, Molecular and Cellular Neuroscience.

[47]  S. Haggarty,et al.  Stem cell models of neuropsychiatric disorders , 2016, Molecular and Cellular Neuroscience.

[48]  Masahiko Watanabe,et al.  Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins , 2016, Neuron.

[49]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[50]  P. Bonaldo,et al.  Collagen VI at a glance , 2015, Journal of Cell Science.

[51]  Marius Wernig,et al.  Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. , 2015, Cell stem cell.

[52]  J. Coyle,et al.  The NMDA receptor 'glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond. , 2015, Current opinion in pharmacology.

[53]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[54]  J. Coyle,et al.  Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. , 2014, JAMA psychiatry.

[55]  A. Koleske,et al.  Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood , 2014, Front. Neuroanat..

[56]  David W. Nauen,et al.  Synaptic dysregulation in a human iPS cell model of mental disorders , 2014, Nature.

[57]  A. Hayashi‐Takagi,et al.  PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence , 2014, Proceedings of the National Academy of Sciences.

[58]  Friedemann Kiefer,et al.  Modulation of synaptic function through the α-neurexin–specific ligand neurexophilin-1 , 2014, Proceedings of the National Academy of Sciences.

[59]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[60]  D. Lewis,et al.  Dendritic spine pathology in schizophrenia , 2013, Neuroscience.

[61]  A. Sawa,et al.  Human Cell Models for Schizophrenia , 2013 .

[62]  M. Missler,et al.  Neurexins , 2013, Genome Biology.

[63]  M. Furihata,et al.  A mental retardation gene, motopsin/prss12, modulates cell morphology by interaction with seizure-related gene 6. , 2013, Biochemical and biophysical research communications.

[64]  Thomas C. Südhof,et al.  Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking , 2013, Cell.

[65]  A. Sawa,et al.  Synapse-specific contributions in the cortical pathology of schizophrenia , 2013, Neurobiology of Disease.

[66]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[67]  D. Patel,et al.  The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors. , 2013, Genes & development.

[68]  F. J. Livesey,et al.  Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks , 2012, Nature Protocols.

[69]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[70]  Peter Kirwan,et al.  Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses , 2012, Nature Neuroscience.

[71]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[72]  B. Cohen,et al.  Behavioral effects of clozapine: Involvement of trace amine pathways in C. elegans and M. musculus , 2011, Brain Research.

[73]  J. Rubenstein,et al.  Deriving Excitatory Neurons of the Neocortex from Pluripotent Stem Cells , 2011, Neuron.

[74]  Fred H. Gage,et al.  Modelling schizophrenia using human induced pluripotent stem cells , 2011, Nature.

[75]  M. Buchsbaum,et al.  Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia , 2011, European Archives of Psychiatry and Clinical Neuroscience.

[76]  H. Eichenbaum,et al.  Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology , 2011, Genes, brain, and behavior.

[77]  A. Hayashi‐Takagi,et al.  Disturbed synaptic connectivity in schizophrenia: Convergence of genetic risk factors during neurodevelopment , 2010, Brain Research Bulletin.

[78]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[79]  N. L. Le Novère,et al.  Schizophrenic: forever young? , 2010, Genome Medicine.

[80]  Christian Gaser,et al.  Reduced cortical thickness in first episode schizophrenia , 2010, Schizophrenia Research.

[81]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[82]  Satoshi O. Suzuki,et al.  Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice , 2009, Nature Cell Biology.

[83]  D. Lewis,et al.  Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. , 2009, The Journal of clinical investigation.

[84]  B. Cohen,et al.  Clozapine Interaction with Phosphatidyl Inositol 3-Kinase (PI3K)/Insulin Signaling Pathway in Caenorhabditis elegans , 2009, Neuropsychopharmacology.

[85]  Claudia S. Barros,et al.  Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system , 2009, Proceedings of the National Academy of Sciences.

[86]  L. DeLisi Searching for the true genetic vulnerability for schizophrenia , 2009, Genome Medicine.

[87]  M. Mattson,et al.  Mitochondria in Neuroplasticity and Neurological Disorders , 2008, Neuron.

[88]  S. Snyder,et al.  Neuroscience: A complex in psychosis , 2008, Nature.

[89]  A. Frigessi,et al.  Regional thinning of the cerebral cortex in schizophrenia: Effects of diagnosis, age and antipsychotic medication , 2008, Schizophrenia Research.

[90]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[91]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[92]  Akira Sawa,et al.  Schizophrenia: Diverse Approaches to a Complex Disease , 2002, Science.

[93]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.

[94]  R. Hoffman,et al.  Schizophrenia as a disorder of developmentally reduced synaptic connectivity. , 2000, Archives of general psychiatry.

[95]  P. Goldman-Rakic,et al.  Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey , 1995, The Journal of comparative neurology.

[96]  B. Pakkenberg,et al.  Post-mortem Study of Chronic Schizophrenic Brains , 1987, British Journal of Psychiatry.

[97]  D. Rossignol,et al.  Mitochondrial Dysfunction in Psychiatric Disorders , 2015 .

[98]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[99]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[100]  B. Pakkenberg,et al.  No deficit in total number of neurons in the prefrontal cortex in schizophrenics. , 2001, Journal of psychiatric research.

[101]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[102]  I. Feinberg,et al.  Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? , 1982, Journal of psychiatric research.