Strong cliques in diamond-free graphs

Abstract A strong clique in a graph is a clique intersecting all inclusion-maximal stable sets. Strong cliques play an important role in the study of perfect graphs. We study strong cliques in the class of diamond-free graphs, from both structural and algorithmic points of view. We show that the following five NP -hard or co-NP -hard problems all remain NP -hard or co-NP -hard when restricted to the class of diamond-free graphs: Is a given clique strong? Does the graph have a strong clique? Is every vertex contained in a strong clique? Given a partition of the vertex set into cliques, is every clique in the partition strong? Can the vertex set be partitioned into strong cliques? On the positive side, we show that the following three problems whose computational complexity is open in general can be solved in polynomial time in the class of diamond-free graphs: Does every induced subgraph have a strong clique? Is every maximal clique strong? Is every edge contained in a strong clique? The last two results are derived from a characterization of diamond-free graphs in which every maximal clique is strong, which also implies an improved Erdős-Hajnal property for such graphs.

[1]  Christian Komusiewicz,et al.  Graph-based data clustering with overlaps , 2009, Discret. Optim..

[2]  András Gyárfás Reflections on a Problem of Erdős and Hajnal , 2013, The Mathematics of Paul Erdős II.

[3]  Maria Chudnovsky,et al.  Obstructions for three-coloring graphs without induced paths on six vertices , 2015, J. Comb. Theory, Ser. B.

[4]  Daniël Paulusma,et al.  Colouring diamond-free graphs , 2015, J. Comput. Syst. Sci..

[5]  Nick Roussopoulos,et al.  A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..

[6]  Chính T. Hoàng,et al.  On a conjecture of Meyniel , 1987, J. Comb. Theory, Ser. B.

[7]  V. Chvátal,et al.  A Note on Well-Covered Graphs , 1993 .

[8]  Ramesh S. Sankaranarayana,et al.  Complexity results for well-covered graphs , 1992, Networks.

[9]  Jeremy P. Spinrad Finding Large Holes , 1991, Inf. Process. Lett..

[10]  Martin Milanic,et al.  Equistarable Graphs and Counterexamples to Three Conjectures on Equistable Graphs , 2017, J. Graph Theory.

[11]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[12]  Vladimir Gurvich,et al.  Not complementary connected and not CIS d-graphs form weakly monotone families , 2010, Discret. Math..

[13]  Sue Whitesides,et al.  An Algorithm for Finding Clique Cut-Sets , 1981, Inf. Process. Lett..

[14]  Vladimir Gurvich,et al.  On CIS circulants , 2013, Discret. Math..

[15]  Igor E. Zverovich,et al.  Bipartite bihypergraphs: A survey and new results , 2006, Discret. Math..

[16]  Alan Tucker Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.

[17]  Vladimir Gurvich,et al.  On exact blockers and anti-blockers, Δ-conjecture, and related problems , 2011, Discret. Appl. Math..

[18]  Duane W. DeTemple,et al.  When are chordal graphs also partition graphs? , 1997, Australas. J Comb..

[19]  Feng Sun,et al.  Equistable graphs , 1994, J. Graph Theory.

[20]  T. Karthick,et al.  On the Chromatic Number of ($$P_6$$P6, Diamond)-Free Graphs , 2018, Graphs Comb..

[21]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[22]  Vassilis Giakoumakis,et al.  Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences , 2011, Discret. Appl. Math..

[23]  Martin Milanic,et al.  Strong Cliques in Diamond-Free Graphs , 2020, WG.

[24]  Martin Milanič,et al.  Strong cliques and equistability of EPT graphs , 2016, Discret. Appl. Math..

[25]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[26]  Vassilis Giakoumakis,et al.  Efficiently decomposing, recognizing and triangulating hole-free graphs without diamonds , 2015, Discret. Appl. Math..

[27]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[28]  Kristina Vuskovic,et al.  Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences , 2009, J. Comb. Theory, Ser. B.

[29]  Philippe G. H. Lehot An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph , 1974, JACM.

[30]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[31]  Martin Milanic,et al.  A characterization of claw-free CIS graphs and new results on the order of CIS graphs , 2018, LAGOS.

[32]  Bernard Ries,et al.  Detecting strong cliques , 2018, Discret. Math..

[33]  Wenan Zang,et al.  Generalizations of Grillet's theorem on maximal stable sets and maximal cliques in graphs , 1995, Discret. Math..

[34]  Xiaotie Deng,et al.  Proof of Chvátal's conjecture on maximal stable sets and maximal cliques in graphs , 2004, J. Comb. Theory, Ser. B.

[35]  Ton Kloks,et al.  On the Recognition of General Partition Graphs , 2003, WG.

[36]  Vladimir Gurvich,et al.  On equistable, split, CIS, and related classes of graphs , 2015, Discret. Appl. Math..

[37]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.

[38]  Maria Chudnovsky,et al.  The Erdös–Hajnal Conjecture—A Survey , 2014, J. Graph Theory.

[39]  Maciej M. Syslo,et al.  An algorithm to recognize a middle graph , 1984, Discret. Appl. Math..

[40]  Martin Charles Golumbic,et al.  Perfect Elimination and Chordal Bipartite Graphs , 1978, J. Graph Theory.

[41]  Stephan Olariu A decomposition for strongly perfect graphs , 1989, J. Graph Theory.

[42]  Edward Dobson,et al.  Vertex-transitive CIS graphs , 2014, Eur. J. Comb..

[43]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[44]  Duane W. DeTemple,et al.  A characterization and hereditary properties for partitoon graphs , 1993, Discret. Math..

[45]  Grant A. Cheston,et al.  A Survey of the Algorithmic Properties of Simplicial, Upper Bound and Middle Graphs , 2006, J. Graph Algorithms Appl..

[46]  Chính T. Hoàng,et al.  Efficient Algorithms for Minimum Weighted Colouring of Some Classes of Perfect Graphs , 1994, Discret. Appl. Math..

[47]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[48]  Stefan Hougardy,et al.  Classes of perfect graphs , 2006, Discret. Math..

[49]  Vladimir Gurvich,et al.  On Graphs Whose Maximal Cliques and Stable Sets Intersect , 2018 .

[50]  M. Burlet,et al.  Polynomial algorithm to recognize a Meyniel graph , 1984 .

[51]  Martin Milanic,et al.  On graphs vertex-partitionable into strong cliques , 2016, Discret. Math..

[52]  Charles Payan,et al.  A class of threshold and domishold graphs: equistable and equidominating graphs , 1980, Discret. Math..