LOCUST: a custom sequence locus typer for classifying microbial isolates

Summary LOCUST is a custom sequence locus typer tool for classifying microbial genomes. It provides a fully automated opportunity to customize the classification of genome-wide nucleotide variant data most relevant to biological research. Availability and Implementation Source code, demo data, and detailed documentation are freely available at http://sourceforge.net/projects/locustyper . Contact lbrinkac@jcvi.org. Supplementary information Supplementary data are available at Bioinformatics online.

[1]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[2]  Ole Lund,et al.  Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli , 2014, Journal of Clinical Microbiology.

[3]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[4]  Michael J. Stanhope,et al.  Universal trees based on large combined protein sequence data sets , 2001, Nature Genetics.

[5]  L. Price,et al.  Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within Bacillus anthracis , 2000, Journal of bacteriology.

[6]  Eduardo N. Taboada,et al.  The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies , 2016, PloS one.

[7]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[9]  Arthur W. Pightling,et al.  The Listeria monocytogenes Core-Genome Sequence Typer (LmCGST): a bioinformatic pipeline for molecular characterization with next-generation sequence data , 2015, BMC Microbiology.

[10]  Ye Feng,et al.  BacWGSTdb, a database for genotyping and source tracking bacterial pathogens , 2015, Nucleic Acids Res..

[11]  Daniel Falush,et al.  SimMLST: simulation of multi-locus sequence typing data under a neutral model , 2009, Bioinform..

[12]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[13]  Justin Zobel,et al.  SRST2: Rapid genomic surveillance for public health and hospital microbiology labs , 2014 .

[14]  M. Gilmour,et al.  Sequence-based typing of genetic targets encoded outside of the O-antigen gene cluster is indicative of Shiga toxin-producing Escherichia coli serogroup lineages , 2007, Journal of medical microbiology.

[15]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[16]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[17]  Joshua Quick,et al.  Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella , 2015, Genome Biology.

[18]  Alexandre P. Francisco,et al.  PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods , 2017, Bioinform..

[19]  N. Makridakis,et al.  Whole-genome sequencing targets drug-resistant bacterial infections , 2015, Human Genomics.

[20]  Eduardo N. Taboada,et al.  MIST: A Tool for Rapid in silico Generation of Molecular Data from Bacterial Genome Sequences , 2013, BIOINFORMATICS.