A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements

This paper proposes a new virtual crack closure-integral method (VCCM) for quadratic tetrahedral finite element to compute the energy release rates/stress intensity factors. The formulations, numerical implementations and some numerical results of proposed VCCM are presented in this paper. Proposed VCCM enables us to adopt the tetrahedral finite element in 3D crack problems and us to use automatic mesh generation programs. Therefore process time to perform 3D crack analysis drastically reduces compared with the case of hexahedral elements.

[1]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[2]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[3]  H. Ishikawa,et al.  A finite element analysis of stress intensity factors for combined tensile and shear loading by only a virtual crack extension , 1980 .

[4]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[5]  Hiroshi Noguchi,et al.  Tension and bending of finite thickness plates with a semi-elliptical surface crack , 1984 .

[6]  Yasuyoshi Fukui,et al.  Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front , 2005 .

[7]  S. K. Maiti Finite element computation of crack closure integrals and stress intensity factors , 1992 .

[8]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[9]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[10]  K. N. Shivakumar,et al.  A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies , 1988, International Journal of Fracture.

[11]  G. De Roeck,et al.  Strain energy release rate formulae for 3D finite element , 1995 .

[12]  David M. Parks,et al.  Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors , 2000 .

[13]  K. W. Barlow,et al.  Fatigue crack propagation simulation in an aircraft engine fan blade attachment , 2005 .

[14]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[15]  S. Atluri,et al.  Structural integrity of aging airplanes , 1991 .

[16]  Toru Ikeda,et al.  Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials , 2007 .

[17]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[18]  Hiroshi Okada,et al.  A virtual crack closure-integral method (VCCM) for three-dimensional crack problems using linear tetrahedral finite elements , 2005 .

[19]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[20]  James W. Mar,et al.  Structural Integrity of Aging Airplanes: A Perspective , 1991 .

[21]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[22]  村上 敬宜,et al.  Stress intensity factors handbook , 1987 .

[23]  S. Fawaz,et al.  Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an oblique elliptical crack front , 1998 .

[24]  Kunigal N. Shivakumar,et al.  An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems , 1990 .

[25]  S. A. Fawaz,et al.  Stress intensity factor solutions for part-elliptical through cracks , 1999 .

[26]  A. S. Kobayashi STRESS INTENSITY FACTORS HANDBOOK, Y. Murakami, (Editor in Chief), M.T. Hasebe, Y. Itoh, K. Kishimoto, H. Miyata, N. Miyazaki, H. Terada, K. Tohgo and R. Yuuki, Co‐editor , 1994 .