Bregman Itoh–Abe Methods for Sparse Optimisation

In this paper we propose optimisation methods for variational regularisation problems based on discretising the inverse scale space flow with discrete gradient methods. Inverse scale space flow generalises gradient flows by incorporating a generalised Bregman distance as the underlying metric. Its discrete-time counterparts, Bregman iterations and linearised Bregman iterations are popular regularisation schemes for inverse problems that incorporate a priori information without loss of contrast. Discrete gradient methods are tools from geometric numerical integration for preserving energy dissipation of dissipative differential systems. The resultant Bregman discrete gradient methods are unconditionally dissipative and achieve rapid convergence rates by exploiting structures of the problem such as sparsity. Building on previous work on discrete gradients for non-smooth, non-convex optimisation, we prove convergence guarantees for these methods in a Clarke subdifferential framework. Numerical results for convex and non-convex examples are presented.

[1]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[2]  Michael Möller,et al.  Spectral Decompositions Using One-Homogeneous Functionals , 2016, SIAM J. Imaging Sci..

[3]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[4]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[5]  H. B. Curry The method of steepest descent for non-linear minimization problems , 1944 .

[6]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[7]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[8]  Dirk A. Lorenz,et al.  The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations , 2013, SIAM J. Imaging Sci..

[9]  Stephen J. Wright Coordinate descent algorithms , 2015, Mathematical Programming.

[10]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[11]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[12]  F. Clarke Necessary conditions for nonsmooth problems in-optimal control and the calculus of variations , 1991 .

[13]  Lin He,et al.  Error estimation for Bregman iterations and inverse scale space methods in image restoration , 2007, Computing.

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  Matthias Joachim Ehrhardt,et al.  A geometric integration approach to smooth optimisation: Foundations of the discrete gradient method , 2018, 1805.06444.

[16]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[17]  Yuto Miyatake,et al.  On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems , 2017, J. Comput. Appl. Math..

[18]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[19]  R. Rockafellar,et al.  Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .

[20]  Ernst Hairer,et al.  Energy-diminishing integration of gradient systems , 2014 .

[21]  K. Kiwiel Proximal Minimization Methods with Generalized Bregman Functions , 1997 .

[22]  Martin Benning,et al.  Choose Your Path Wisely: Gradient Descent in a Bregman Distance Framework , 2017, SIAM J. Imaging Sci..

[23]  Elena Celledoni,et al.  Dissipative Numerical Schemes on Riemannian Manifolds with Applications to Gradient Flows , 2018, SIAM J. Sci. Comput..

[24]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[25]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[26]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .

[27]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[28]  Michael I. Jordan,et al.  On Symplectic Optimization , 2018, 1802.03653.

[29]  Volker Grimm,et al.  Discrete gradient methods for solving variational image regularisation models , 2017 .

[30]  Martin Burger,et al.  Bregman Distances in Inverse Problems and Partial Differential Equations , 2015, 1505.05191.

[31]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[32]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Martin Benning,et al.  Inverse scale space decomposition , 2016, 1612.09203.

[34]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[35]  Otmar Scherzer,et al.  Inverse Scale Space Theory for Inverse Problems , 2001, Scale-Space.

[36]  Johannes Jahn,et al.  Introduction to the theory of nonlinear optimization (3. ed.) , 2007 .

[37]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[38]  Carola-Bibiane Schönlieb,et al.  Variational Image Regularization with Euler's Elastica Using a Discrete Gradient Scheme , 2017, SIAM J. Imaging Sci..

[39]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[40]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[41]  Y. Censor,et al.  On the proximal minimization algorithm with D-Functions , 1992 .

[42]  Marcus A. Magnor,et al.  A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[43]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[44]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[45]  Alexandre d'Aspremont,et al.  Integration Methods and Optimization Algorithms , 2017, NIPS.

[46]  Michael Möller,et al.  Nonlinear Spectral Analysis via One-Homogeneous Functionals: Overview and Future Prospects , 2015, Journal of Mathematical Imaging and Vision.

[47]  Andre Wibisono,et al.  A variational perspective on accelerated methods in optimization , 2016, Proceedings of the National Academy of Sciences.

[48]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[49]  Yee Whye Teh,et al.  Hamiltonian Descent Methods , 2018, ArXiv.

[50]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[51]  Francisco Sandoval Hernández,et al.  A discrete gradient method to enhance the numerical behaviour of Hopfield networks , 2015, Neurocomputing.

[52]  K. Zygalakis,et al.  Explicit stabilised gradient descent for faster strongly convex optimisation , 2018, BIT Numerical Mathematics.

[53]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[54]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[55]  Michael Möller,et al.  An adaptive inverse scale space method for compressed sensing , 2012, Math. Comput..

[56]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[57]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[58]  Martin Burger,et al.  Modern regularization methods for inverse problems , 2018, Acta Numerica.

[59]  Carola-Bibiane Schonlieb,et al.  A Geometric Integration Approach to Nonsmooth, Nonconvex Optimisation , 2018, Foundations of Computational Mathematics.

[60]  Michael I. Jordan,et al.  A Lyapunov Analysis of Momentum Methods in Optimization , 2016, ArXiv.

[61]  Dirk A. Lorenz,et al.  Linear convergence of the randomized sparse Kaczmarz method , 2016, Mathematical Programming.

[62]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.