Uncertainty Visualization of the Marching Squares and Marching Cubes Topology Cases

Marching squares (MS) and marching cubes (MC) are widely used algorithms for level-set visualization of scientific data. In this paper, we address the challenge of uncertainty visualization of the topology cases of the MS and MC algorithms for uncertain scalar field data sampled on a uniform grid. The visualization of the MS and MC topology cases for uncertain data is challenging due to their exponential nature and the possibility of multiple topology cases per cell of a grid. We propose the topology case count and entropy-based techniques for quantifying uncertainty in the topology cases of the MS and MC algorithms when noise in data is modeled with probability distributions. We demonstrate the applicability of our techniques for independent and correlated uncertainty assumptions. We visualize the quantified topological uncertainty via color mapping proportional to uncertainty, as well as with interactive probability queries in the MS case and entropy isosurfaces in the MC case. We demonstrate the utility of our uncertainty quantification framework in identifying the isovalues exhibiting relatively high topological uncertainty. We illustrate the effectiveness of our techniques via results on synthetic, simulation, and hixel datasets.

[1]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[2]  M. Sheelagh T. Carpendale,et al.  Visualization of Uncertainty and Reasoning , 2007, Smart Graphics.

[3]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[4]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[5]  W. Marsden I and J , 2012 .

[6]  Alireza Entezari,et al.  Uncertainty Quantification in Linear Interpolation for Isosurface Extraction , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[8]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[9]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[10]  Chris R. Johnson,et al.  Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[11]  Horst K. Hahn,et al.  Uncertainty in medical visualization: Towards a taxonomy , 2014, Comput. Graph..

[12]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[13]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[14]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  Pak Chung Wong,et al.  Expanding the Frontiers of Visual Analytics and Visualization , 2012, Springer London.

[17]  Michel Rixen,et al.  The Subseasonal to Seasonal (S2S) Prediction Project Database , 2017 .

[18]  Alex Pang,et al.  Visualizing Uncertainty in Geospatial Data , 2001 .

[19]  Ahmad Y. Javaid,et al.  Recent advances and challenges in uncertainty visualization: a survey , 2021, Journal of Visualization.

[20]  Paul Rosen,et al.  From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches , 2011, WoCoUQ.

[21]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[22]  Valerio Pascucci,et al.  Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[23]  Dongbin Xiu,et al.  INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS. , 2012, International journal for uncertainty quantification.

[24]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[25]  Chris R. Johnson,et al.  Visualization of Uncertain Multivariate Data via Feature Confidence Level-Sets , 2021, EuroVis.

[26]  Björn Zehner,et al.  Visualization of gridded scalar data with uncertainty in geosciences , 2010, Comput. Geosci..

[27]  Valerio Pascucci,et al.  Analysis of large-scale scalar data using hixels , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[28]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.