Nonparametric estimation of quadratic regression functionals

Quadratic regression functionals are important for bandwidth selection of nonparametric regression techniques and for nonparametric goodness-of-®t tests. Based on local polynomial regression, we propose estimators for weighted integrals of squared derivatives of regression functions. The rates of convergence in mean square error are calculated under various degrees of smoothness and appropriate values of the smoothing parameter. Asymptotic distributions of the proposed quadratic estimators are considered with the Gaussian noise assumption. It is shown that when the estimators are pseudoquadratic (linear components dominate quadratic components), asymptotic normality with rate nÿ1=2 can be achieved.

[1]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[2]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[3]  Simon J. Sheather,et al.  Using non stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives , 1991 .

[4]  B. Laurent Estimation of integral functionals of a density and its derivatives , 1997 .

[5]  Fan,et al.  Rates of Convergence for the Pre-asymptotic SubstitutionBandwidth , 1996 .

[6]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[7]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[8]  Jianqing Fan,et al.  Rates of convergence for the pre-asymptotic substitution bandwidth selector , 1999 .

[9]  Michael Nussbaum,et al.  Minimax quadratic estimation of a quadratic functional , 1990, J. Complex..

[10]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[11]  P. Massart,et al.  Estimation of Integral Functionals of a Density , 1995 .

[12]  Brian Kent Aldershof,et al.  Estimation of integrated squared density derivatives , 1991 .

[13]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[14]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[15]  Sam Efromovich,et al.  On Bickel and Ritov's conjecture about adaptive estimation of the integral of the square of density derivative , 1996 .

[16]  James Stephen Marron,et al.  Lower bounds for bandwidth selection in density estimation , 1991 .

[17]  Jianqing Fan,et al.  On the estimation of quadratic functionals , 1991 .

[18]  James Stephen Marron,et al.  Estimation of integrated squared density derivatives , 1987 .

[19]  B. Laurent Efficient estimation of integral functionals of a density , 1996 .

[20]  Kjell A. Doksum,et al.  Nonparametric Estimation of Global Functionals and a Measure of the Explanatory Power of Covariates in Regression , 1995 .