RETRACTED ARTICLE: Epileptic seizure detection by analyzing high dimensional phase space via Poincaré section

[1]  Pedro J. García-Laencina,et al.  Efficient feature selection and linear discrimination of EEG signals , 2013, Neurocomputing.

[2]  Ramaswamy Palaniappan,et al.  Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification , 2005, IEC.

[3]  J. Chae,et al.  Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension. , 1998, Medical engineering & physics.

[4]  O. Farooq,et al.  Automated seizure detection in scalp EEG using multiple wavelet scales , 2012, 2012 IEEE International Conference on Signal Processing, Computing and Control.

[5]  Qi Xu,et al.  Fuzzy support vector machine for classification of EEG signals using wavelet-based features. , 2009, Medical engineering & physics.

[6]  Min Wang,et al.  Automatic detection of interictal epileptiform discharges based on time-series sequence merging method , 2013, Neurocomputing.

[7]  C. M. Michel,et al.  Temporal and spatial determination of EEG-seizure onset in the frequency domain , 2000, Clinical Neurophysiology.

[8]  Min-You Chen,et al.  Phase space reconstruction for improving the classification of single trial EEG , 2014, Biomed. Signal Process. Control..

[9]  Aggelos K. Katsaggelos,et al.  Analysis of High-Dimensional Phase Space via Poincaré Section for Patient-Specific Seizure Detection , 2016, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[10]  Tarik Al-Ani,et al.  Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: A comparative study using short and standard epoch lengths , 2013, Comput. Methods Programs Biomed..

[11]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[12]  F. Takens Detecting strange attractors in turbulence , 1981 .

[13]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[14]  Jae-Kwon Kim,et al.  Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance , 2014, Comput. Methods Programs Biomed..

[15]  D. Looney,et al.  Time-Frequency Analysis of EEG Asymmetry Using Bivariate Empirical Mode Decomposition , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[16]  Yusuf Uzzaman Khan,et al.  Feature extraction and classification of EEG for automatic seizure detection , 2011, 2011 International Conference on Multimedia, Signal Processing and Communication Technologies.

[17]  Jin Wu-yin Implementation method of brain-computer interface system based on Fourier transform , 2008 .

[18]  Boualem Boashash,et al.  A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG , 2014, Digit. Signal Process..

[19]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[20]  Wim Van Paesschen,et al.  Incorporating structural information from the multichannel EEG improves patient-specific seizure detection , 2012, Clinical Neurophysiology.

[21]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.