First-principles calculation of intrinsic defect formation volumes in silicon

We present an extensive first-principles study of the pressure dependence of the formation enthalpies of all the know vacancy and self-interstitial configurations in silicon, in each charge state from -2 through +2. The neutral vacancy is found to have a formation volume that varies markedly with pressure, leading to a remarkably large negative value (-0.68 atomic volumes) for the zero-pressure formation volume of a Frenkel pair (V + I). The interaction of volume and charge was examined, leading to pressure--Fermi level stability diagrams of the defects. Finally, we quantify the anisotropic nature of the lattice relaxation around the neutral defects.

[1]  P. Ehrhart,et al.  Grazing incidence diffuse x-ray scattering investigation of the properties of irradiation-induced point defects in silicon , 2001 .

[2]  Michael J. Aziz,et al.  Stress Effects on Defects and Dopant Diffusion in Si , 2001 .

[3]  R. Needs First-principles calculations of self-interstitial defect structures and diffusion paths in silicon , 1999 .

[4]  P. Griffin,et al.  SELF-DIFFUSION IN SILICON : SIMILARITY BETWEEN THE PROPERTIES OF NATIVE POINT DEFECTS , 1999 .

[5]  A. Larsen,et al.  Room-temperature vacancy migration in crystalline Si from an ion-implanted surface layer , 1999 .

[6]  Satoshi Itoh,et al.  Calculations of Silicon Self-Interstitial Defects , 1999 .

[7]  E. Kaxiras,et al.  Vacancy in Silicon Revisited: Structure and Pressure Effects , 1998 .

[8]  R. Nieminen,et al.  Convergence of supercell calculations for point defects in semiconductors: Vacancy in silicon , 1998 .

[9]  E. Haller,et al.  Silicon Self-Diffusion in Isotope Heterostructures , 1998 .

[10]  K. Chang,et al.  First-principles study of the self-interstitial diffusion mechanism in silicon , 1998 .

[11]  A. Canning,et al.  Extended Si |P[311|P] defects , 1996, cond-mat/9611145.

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[15]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[16]  E. Tarnow The Si Vacancy: An Example of a Pressure-Sensitive Jahn-Teller System , 1993 .

[17]  Oshiyama,et al.  Microscopic mechanism of atomic diffusion in Si under pressure. , 1992, Physical review. B, Condensed matter.

[18]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[19]  Pandey,et al.  Entropy calculation beyond the harmonic approximation: Application to diffusion by concerted exchange in Si. , 1991, Physical review letters.

[20]  Bernholc,et al.  Pressure effects on self-diffusion in silicon. , 1989, Physical review. B, Condensed matter.

[21]  Pandey Diffusion without vacancies or interstitials: A new concerted exchange mechanism. , 1986, Physical review letters.

[22]  U. Gösele,et al.  Point defects, diffusion processes, and swirl defect formation in silicon , 1985 .

[23]  R. Car,et al.  Microscopic theory of atomic diffusion mechanisms in silicon , 1984 .

[24]  A. Brailsford,et al.  Anelastic Relaxation in Crystalline Solids , 1973 .

[25]  J. Bourgoin,et al.  A new mechanism for interstistitial migration , 1972 .

[26]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[28]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .