Nanoparticles (NPs)-mediated lncBCMA silencing to promote eEF1A1 ubiquitination and suppress breast cancer growth and metastasis

[1]  R. Liu,et al.  Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment , 2022, Chinese Chemical Letters.

[2]  Qiaobing Xu,et al.  Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs , 2022, Acta pharmaceutica Sinica. B.

[3]  James E. Dahlman,et al.  Drug delivery systems for RNA therapeutics , 2022, Nature Reviews Genetics.

[4]  Jiang Ouyang,et al.  Emerging vaccine nanotechnology: From defense against infection to sniping cancer , 2022, Acta Pharmaceutica Sinica B.

[5]  Jianliang Shen,et al.  Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. , 2021, Carbohydrate polymers.

[6]  Xiaoding Xu,et al.  Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. , 2021, Biomaterials.

[7]  Guangji Wang,et al.  Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. , 2021, Acta biomaterialia.

[8]  Hicham Fenniri,et al.  Advances in cancer theranostics using organic-inorganic hybrid nanotechnology , 2021 .

[9]  C. Maher,et al.  Long noncoding RNAs in cancer metastasis , 2021, Nature Reviews Cancer.

[10]  C. Denkert,et al.  Breast cancer , 2021, The Lancet.

[11]  L. Qi,et al.  Metformin Liposome-Mediated PD-L1 Downregulation for Amplifying the Photodynamic Immunotherapy Efficacy. , 2021, ACS applied materials & interfaces.

[12]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[13]  Maite Huarte,et al.  Gene regulation by long non-coding RNAs and its biological functions , 2020, Nature reviews. Molecular cell biology.

[14]  K. Varley,et al.  The lingering mysteries of metastatic recurrence in breast cancer , 2020, British journal of cancer.

[15]  Priya Mondal,et al.  Long non-coding RNAs in breast cancer metastasis , 2020, Non-coding RNA research.

[16]  N. Charbe,et al.  Small interfering RNA for cancer treatment: overcoming hurdles in delivery , 2020, Acta pharmaceutica Sinica. B.

[17]  H. Yao,et al.  Nanoparticles (NPs)‐Meditated LncRNA AFAP1‐AS1 Silencing to Block Wnt/β‐Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy , 2020, Advanced science.

[18]  X. Bian,et al.  Triple-negative breast cancer molecular subtyping and treatment progress , 2020, Breast Cancer Research.

[19]  Wei Tao,et al.  Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. , 2020, Nano letters.

[20]  M. Fares,et al.  Molecular principles of metastasis: a hallmark of cancer revisited , 2020, Signal Transduction and Targeted Therapy.

[21]  O. Farokhzad,et al.  Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. , 2020, Biomaterials.

[22]  F. Slack,et al.  The Role of Non-coding RNAs in Oncology , 2019, Cell.

[23]  H. Yao,et al.  Stimuli-Responsive Polymer-Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. , 2019, Nano letters.

[24]  Jianjun He,et al.  The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer , 2019, BMC Cancer.

[25]  Yang Wang,et al.  Cellular functions of long noncoding RNAs , 2019, Nature Cell Biology.

[26]  Daniel G. Anderson,et al.  Strategies, design, and chemistry in siRNA delivery systems. , 2019, Advanced drug delivery reviews.

[27]  M. Ellis,et al.  Long non-coding RNA MALAT1 suppresses breast cancer metastasis , 2018, Nature Genetics.

[28]  Howard Y. Chang,et al.  Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element , 2018, Cell.

[29]  F. Slack,et al.  Non-coding RNA networks in cancer , 2017, Nature Reviews Cancer.

[30]  Youqing Shen,et al.  Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration☆ , 2017, Advanced drug delivery reviews.

[31]  Jonathan Rasmussen,et al.  Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. , 2017, ACS nano.

[32]  R. Weinberg,et al.  Emerging Biological Principles of Metastasis , 2017, Cell.

[33]  J. Balko,et al.  Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease , 2016, Nature Reviews Clinical Oncology.

[34]  Xin Yu,et al.  The Ubiquitin-like Protein FAT10 Stabilizes eEF1A1 Expression to Promote Tumor Proliferation in a Complex Manner. , 2016, Cancer research.

[35]  Omid C Farokhzad,et al.  Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy. , 2016, Angewandte Chemie.

[36]  Howard Y. Chang,et al.  Long Noncoding RNAs in Cancer Pathways. , 2016, Cancer cell.

[37]  X. Guan,et al.  Cancer metastases: challenges and opportunities , 2015, Acta pharmaceutica Sinica. B.

[38]  L. Rodrigues,et al.  Triple Negative Breast Cancer: Nanosolutions for a Big Challenge , 2015, Advanced science.

[39]  K. Polyak,et al.  Tumorigenesis: it takes a village , 2015, Nature Reviews Cancer.

[40]  H. Yao,et al.  A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. , 2015, Cancer cell.

[41]  D. Largaespada,et al.  PVT1 dependence in cancer with MYC copy-number increase , 2014, Nature.

[42]  Xiaoyang Xu,et al.  Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. , 2014, Advanced drug delivery reviews.

[43]  Baran D. Sumer,et al.  A Broad Nanoparticle-Based Strategy for Tumor Imaging by Nonlinear Amplification of Microenvironment Signals , 2013, Nature materials.

[44]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[45]  I. Watson,et al.  Eukaryotic Translation Elongation Factor 1-Alpha 1 Inhibits p53 and p73 Dependent Apoptosis and Chemotherapy Sensitivity , 2013, PloS one.

[46]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[47]  Elizabeth Iorns,et al.  A New Mouse Model for the Study of Human Breast Cancer Metastasis , 2012, PloS one.

[48]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[49]  Robert A. Weinberg,et al.  Tumor Metastasis: Molecular Insights and Evolving Paradigms , 2011, Cell.

[50]  S. Pitson,et al.  Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis , 2011, Oncogene.

[51]  T. Kinzy,et al.  eEF1A: Thinking Outside the Ribosome* , 2010, The Journal of Biological Chemistry.

[52]  M. Federico,et al.  Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility , 2009, Molecular Cancer.

[53]  Yu-cheng Tseng,et al.  Lipid-based systemic delivery of siRNA. , 2009, Advanced drug delivery reviews.

[54]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[55]  S. Yonehara,et al.  Novel cell death by downregulation of eEF1A1 expression in tetraploids , 2009, Cell Death and Differentiation.

[56]  S. Eccles,et al.  Metastasis: recent discoveries and novel treatment strategies , 2007, The Lancet.

[57]  E. Wang,et al.  C-Raf antagonizes apoptosis induced by IFN-α in human lung cancer cells by phosphorylation and increase of the intracellular content of elongation factor 1A , 2007, Cell Death and Differentiation.

[58]  P. Steeg Tumor metastasis: mechanistic insights and clinical challenges , 2006, Nature Medicine.

[59]  T. Kinzy,et al.  Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology , 2005, Nature Structural &Molecular Biology.

[60]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[61]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[62]  K. Luzzi,et al.  Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. , 1998, The American journal of pathology.

[63]  H. Nojima,et al.  Elongation factor-1α gene determines susceptibility to transformation , 1992, Nature.