Isomorphism classes of elliptic curves over a finite field in some thin families

For a prime p and a given square box, B, we consider all elliptic curves Er,s : Y 2 = X 3 + rX + s defined over a field Fp of p elements with coefficients (r, s) ∈ B. We obtain a nontrivial upper bound for the number of such curves which are isomorphic to ag iven one overFp, in terms of the size of B. We also give an optimal lower bound on the number of distinct isomorphic classes represented.

[1]  Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height , 2006, math/0609144.

[2]  Jordan S. Ellenberg,et al.  Reflection Principles and Bounds for Class Group Torsion , 2007 .

[3]  M. Garaev,et al.  The equation x1x2=x3x4+λ in fields of prime order and applications , 2008 .

[4]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[5]  M. Murty,et al.  On the Distribution of Supersingular Primes , 1996, Canadian Journal of Mathematics.

[6]  A. Zaharescu,et al.  Distribution of Values of Rational Maps on the Fp-Points on an Affine Curve , 2002 .

[7]  N. Elkies Distribution of supersingular primes , 1991 .

[8]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[9]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[10]  M. Z. Garaev,et al.  Concentration of Points on Two and Three Dimensional Modular Hyperbolas and Applications , 2010, 1007.1526.

[11]  Enrico Bombieri,et al.  The number of integral points on arcs and ovals , 1989 .

[12]  Integral points on elliptic curves and 3-torsion in class groups , 2004, math/0405180.

[13]  Todd Cochrane,et al.  The congruence x1x2≡x3x4(modm) and mean values of character sums , 2010 .

[14]  Ana Zumalac'arregui Concentration of points on Modular Quadratic Forms , 2010, 1012.3569.

[15]  Igor E. Shparlinski,et al.  On the concentration of points of polynomial maps and applications , 2012 .

[16]  Hugh L. Montgomery,et al.  Mean values of character sums , 1979 .