Construction of free commutative integro-differential algebras by the method of Gr\"{o}bner-Shirshov bases

In this paper, we construct a canonical linear basis for free commutative integro-differential algebras by applying the method of Gr\"obner-Shirshov bases. We establish the Composition-Diamond Lemma for free commutative differential Rota-Baxter algebras of order $n$. We also obtain a weakly monomial order on these algebras, allowing us to obtain Gr\"{o}bner-Shirshov bases for free commutative integro-differential algebras on a set. We finally generalize the concept of functional derivations to free differential algebras with arbitrary weight and generating sets from which to construct a canonical linear basis for free commutative integro-differential algebras.

[1]  Pierre Cartier,et al.  On the structure of free baxter algebras , 1972 .

[2]  E. R. Kolchin,et al.  Differential algebraic groups , 1986 .

[3]  Markus Rosenkranz,et al.  Solving and factoring boundary problems for linear ordinary differential equations in differential algebras , 2008, J. Symb. Comput..

[4]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .

[5]  G. Bergman The diamond lemma for ring theory , 1978 .

[6]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[7]  Li Guo,et al.  Mixable shuffles, quasi-shuffles and Hopf algebras , 2006 .

[8]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[9]  Li Guo,et al.  Spitzer's identity and the algebraic Birkhoff decomposition in pQFT , 2004, hep-th/0407082.

[10]  Li Guo,et al.  On integro-differential algebras , 2012, 1212.0266.

[11]  Li Guo,et al.  Operated semigroups, Motzkin paths and rooted trees , 2007, 0710.0429.

[12]  Gian-Carlo Rota,et al.  Baxter algebras and combinatorial identities. II , 1969 .

[13]  L. A. Bokut,et al.  Embeddings into simple associative algebras , 1976 .

[14]  Li Guo,et al.  Baxter Algebras and Shuffle Products , 2000 .

[15]  Chengming Bai,et al.  A unified algebraic approach to the classical Yang–Baxter equation , 2007, 0707.4226.

[16]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933 .

[17]  Li Guo,et al.  An introduction to Rota-Baxter algebra , 2012 .

[18]  L. A. Bokut,et al.  Gr\"obner-Shirshov bases for categories , 2011, 1101.1563.

[19]  Yongshan Chen,et al.  Composition–Diamond lemma for tensor product of free algebras☆ , 2008, 0804.2115.

[20]  Li Guo,et al.  Differential type operators and Gröbner-Shirshov bases , 2012, J. Symb. Comput..

[21]  L. A. Bokut,et al.  Gröbner-Shirshov bases for Rota-Baxter algebras , 2009, 0908.2281.

[22]  Jianjun Qiu,et al.  Grobner-Shirshov Bases for Associative Algebras with Multiple Operators and Free Rota-Baxter Algebras ∗† , 2008, 0805.0640.

[23]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[24]  Li Guo,et al.  Differential Algebraic Birkhoff Decomposition and the renormalization of multiple zeta values , 2008 .

[25]  G. Baxter,et al.  AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS FROM A SIMPLE ALGEBRAIC IDENTITY , 1960 .

[26]  J. Ritt Partial differential algebra , 1950 .

[27]  R. Tennant Algebra , 1941, Nature.

[28]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[29]  Li Guo,et al.  On Differential Rota-Baxter Algebras , 2007 .

[30]  Li Guo,et al.  On Free Baxter Algebras: Completions and the Internal Construction , 2000 .