Value iteration for continuous-state POMDPs

[1]  Nikos A. Vlassis,et al.  Perseus: Randomized Point-based Value Iteration for POMDPs , 2005, J. Artif. Intell. Res..

[2]  Douglas Aberdeen,et al.  Scalable Internal-State Policy-Gradient Methods for POMDPs , 2002, ICML.

[3]  Anne Condon,et al.  On the Undecidability of Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision Problems , 1999, AAAI/IAAI.

[4]  N. Vlassis,et al.  A fast point-based algorithm for POMDPs , 2004 .

[5]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[6]  Edward J. Sondik,et al.  The optimal control of par-tially observable Markov processes , 1971 .

[7]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[8]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[9]  Milos Hauskrecht,et al.  Value-Function Approximations for Partially Observable Markov Decision Processes , 2000, J. Artif. Intell. Res..

[10]  Jesse Hoey,et al.  Solving POMDPs with Continuous or Large Discrete Observation Spaces , 2005, IJCAI.

[11]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[12]  Geoffrey J. Gordon,et al.  Finding Approximate POMDP solutions Through Belief Compression , 2011, J. Artif. Intell. Res..

[13]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[14]  N. Vlassis,et al.  Gaussian mixture learning from noisy data , 2004 .

[15]  R. Bellman Dynamic programming. , 1957, Science.

[16]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[17]  Hsien-Te Cheng,et al.  Algorithms for partially observable markov decision processes , 1989 .

[18]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[19]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[20]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[21]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[22]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[23]  Michael I. Jordan,et al.  PEGASUS: A policy search method for large MDPs and POMDPs , 2000, UAI.

[24]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[25]  Sridhar Mahadevan,et al.  Approximate planning with hierarchical partially observable Markov decision process models for robot navigation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[26]  Sebastian Thrun,et al.  Monte Carlo POMDPs , 1999, NIPS.

[27]  Joelle Pineau,et al.  Towards robotic assistants in nursing homes: Challenges and results , 2003, Robotics Auton. Syst..

[28]  Jelle R. Kok,et al.  The Pursuit Domain Package , 2003 .