Quantum hypergraph states

We introduce a class of multiqubit quantum states which generalizes graph states. These states correspond to an underlying mathematical hypergraph, i.e. a graph where edges connecting more than two vertices are considered. We derive a generalized stabilizer formalism to describe this class of states. We introduce the notion of k-uniformity and show that this gives rise to classes of states which are inequivalent under the action of the local Pauli group. Finally we disclose a one-to-one correspondence with states employed in quantum algorithms, such as Deutsch–Jozsa's and Grover's.

[1]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[2]  C. Macchiavello,et al.  Scale invariance of entanglement dynamics in Grover's quantum search algorithm , 2013 .

[3]  Ri Qu,et al.  Multipartite entanglement and hypergraph states of three qubits , 2013 .

[4]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[5]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  C. Macchiavello,et al.  Multipartite entanglement in quantum algorithms , 2010, 1007.4179.

[7]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  Ri Qu,et al.  Encoding hypergraphs into quantum states , 2013 .

[10]  Barbara Kraus,et al.  Local entanglability and multipartite entanglement , 2009 .

[11]  B. Kraus,et al.  Purification to locally maximally entangleable states , 2012, 1208.2553.

[12]  Maarten Van den Nest,et al.  Universal quantum computation with little entanglement. , 2012, Physical review letters.

[13]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Bo Wang,et al.  Relationship among locally maximally entangleable states, W states, and hypergraph states under local unitary transformations , 2013 .

[15]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[16]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[17]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[18]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[19]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[20]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[21]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.