Atomistic modelling of the interaction between peptides and carbon nanotubes

Interactions between single-walled carbon nanotubes (SWNT) and peptides are investigated. An existing polarizable force field, using distributed multipoles up to quadrupoles for the electrostatics, is modified to include a description of the non-bonded interactions between a SWNT and peptides. Adsorption energies and structures calculated with this potential are compared with data from electronic structure theory. Simulations of binding and non-binding peptide aptamers, as identified from experiment, are shown to agree with current experimental observations.

[1]  Mark R. Pederson,et al.  Application of the generalized-gradient approximation to rare-gas dimers , 1997 .

[2]  T. Walsh,et al.  Exact exchange and Wilson-Levy correlation: a pragmatic device for studying complex weakly-bonded systems. , 2005, Physical chemistry chemical physics : PCCP.

[3]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .

[4]  Y. Chiang,et al.  Peptides with selective affinity for carbon nanotubes , 2003, Nature materials.

[5]  Jean-Christophe Charlier,et al.  pi-stacking interaction between carbon nanotubes and organic molecules , 2005 .

[6]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[7]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[8]  D. Eisenberg,et al.  Atomic solvation parameters applied to molecular dynamics of proteins in solution , 1992, Protein science : a publication of the Protein Society.

[9]  Jean-Christophe Charlier,et al.  Ab initio study of benzene adsorption on carbon nanotubes , 2005 .

[10]  Edgar Muñoz,et al.  Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. , 2003, Journal of the American Chemical Society.

[11]  I. Yamashita,et al.  Mechanism underlying specificity of proteins targeting inorganic materials. , 2006, Nano letters.

[12]  D. Forciniti,et al.  Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study. , 2004, Biomacromolecules.

[13]  Kiyotaka Shiba,et al.  A hexapeptide motif that electrostatically binds to the surface of titanium. , 2003, Journal of the American Chemical Society.

[14]  J. Martínez-Magadán,et al.  A theoretical study of dibenzothiophene absorbed on open-ended carbon nanotubes. , 2005, The journal of physical chemistry. B.

[15]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[16]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[17]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[18]  B. Kay,et al.  Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. , 2005, Current opinion in biotechnology.

[19]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[20]  M. Duer,et al.  Investigation of the Nature of the Protein−Mineral Interface in Bone by Solid-State NMR , 2005 .

[21]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[22]  H. Mizuseki,et al.  Interaction of single-walled carbon nanotubes with alkylamines: An ab initio study , 2006 .

[23]  T. Walsh,et al.  Molecular dynamics simulations of peptide carboxylate hydration. , 2006, Physical chemistry chemical physics : PCCP.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  E. Tamiya,et al.  A screening of phage displayed peptides for the recognition of fullerene (C60) , 2004 .

[26]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[27]  Stanley Brown,et al.  Metal-recognition by repeating polypeptides , 1997, Nature Biotechnology.

[28]  Peter J. Rossky,et al.  A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study , 1994 .

[29]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[30]  R. Naik,et al.  Biomimetic synthesis and patterning of silver nanoparticles , 2002, Nature materials.

[31]  M. Bachmann,et al.  Substrate specificity of peptide adsorption: a model study. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[33]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[34]  Hui Xie,et al.  Importance of aromatic content for peptide/single-walled carbon nanotube interactions. , 2005, Journal of the American Chemical Society.

[35]  Ersin Emre Oren,et al.  Metal recognition of septapeptides via polypod molecular architecture. , 2005, Nano letters.

[36]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[37]  J. Evans,et al.  Probing the conformational features of a phage display polypeptide sequence directed against single-walled carbon nanohorn surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[38]  M. Devel,et al.  Molecular dynamics simulations of polarizable nanotubes interacting with water , 2005 .

[39]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[40]  A. Belcher,et al.  Design criteria for engineering inorganic material-specific peptides. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  Kiyotaka Shiba,et al.  Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[43]  Vincenzo Carravetta,et al.  Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[44]  Zhengxiang Gao,et al.  Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. , 2006, Journal of the American Chemical Society.

[45]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[46]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[47]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[48]  Candan Tamerler,et al.  Molecular dynamics simulations on constraint metal binding peptides , 2005 .

[49]  K. West,et al.  Differential adhesion of amino acids to inorganic surfaces , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[51]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[52]  Jeffrey J. Gray,et al.  The interaction of proteins with solid surfaces. , 2004, Current opinion in structural biology.

[53]  Jordi Martí,et al.  Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes , 2003 .

[54]  M. Grundmann,et al.  Binding Specificity of a Peptide on Semiconductor Surfaces , 2004 .

[55]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[56]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[57]  Klaus Schulten,et al.  Empirical nanotube model for biological applications. , 2005, The journal of physical chemistry. B.