Possibilities of finite calculus in computational mechanics

ABSTRACT The expression “finite calculus” refers to the derivation of the governing differential equations in mechanics by invoking balance of fluxes, forces, etc. in a domain of finite size. The governing equations resulting from this approach are different from those of infinitessimal calculus theory and they incorporate new terms depending on the dimensions of the balance domain. The new modified equations allow to derive naturally stabilized numerical schemes using finite element, finite difference, finite volume or meshless methods. The paper briefly discusses the possibilities of the modified governing equations derived via the finite calculus technique for the numerical solution of convection-diffusion problems, incompressible flow and incompressible solid mechanic problems and strain localization problems.

[1]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[2]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[3]  E. Oñate,et al.  An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients , 1998 .

[4]  Eugenio Oñate,et al.  A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces , 1999 .

[5]  Eugenio Oñate,et al.  A finite point method for incompressible flow problems , 2000 .

[6]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[7]  Ramon Codina,et al.  A general algorithm for compressible and incompressible flows. Part III: The semi‐implicit form , 1998 .

[8]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[9]  Eugenio Oñate,et al.  COMPUTATION OF THE STABILIZATION PARAMETER FOR THE FINITE ELEMENT SOLUTION OF ADVECTIVE-DIFFUSIVE PROBLEMS , 1997 .

[10]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[11]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[12]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[13]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[14]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[15]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[16]  O. Zienkiewicz,et al.  A general algorithm for compressible and incompressible flow—Part I. the split, characteristic‐based scheme , 1995 .

[17]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[18]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[19]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[20]  Eugenio Oñate,et al.  A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .

[21]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[22]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[23]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[24]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[25]  O. C. Zienkiewicz,et al.  The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .

[26]  Dominique Pelletier,et al.  On stabilized finite element formulations for incompressible advective–diffusive transport and fluid flow problems , 2000 .

[27]  Eugenio Oñate,et al.  A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .

[28]  David R. Owen,et al.  On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua , 1994 .

[29]  R. I. Issa,et al.  Numerical computation of internal and external flows, volume 2: Computational methods for inviscid and viscous flows , 1991 .

[30]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[31]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[32]  Guillermo Hauke,et al.  A simple subgrid scale stabilized method for the advection–diffusion-reaction equation , 2002 .

[33]  Nils-Erik Wiberg,et al.  Error estimation and adaptive procedures based on superconvergent patch recovery (SPR) techniques , 1997 .

[34]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[35]  Eugenio Oñate,et al.  A residual correction method based on finite calculus , 2003 .

[36]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[37]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[38]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[39]  J. Z. Zhu,et al.  The finite element method , 1977 .

[40]  E. Onate,et al.  An Unstructured Finite Element Solver for Ship Hydrodynamics Problems , 2003 .

[41]  Ramon Codina,et al.  A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .