SplamiR - prediction of spliced miRNAs in plants

MOTIVATION MicroRNAs (miRNAs) are important regulators of biological processes in plants and animals. Recently, miRNA genes have been discovered, whose primary transcripts are spliced and which cannot be predicted directly from genomic sequence. Hence, more sophisticated programs for the detection of spliced miRNAs are required. RESULTS Here, we present the first method for the prediction of spliced miRNAs in plants. For a given genomic sequence, SplamiR creates a database of complementary sequence pairs, which might encode for RNAs folding into stem-loop structures. Next, in silico splice variants of database sequences with complementarity to an mRNA of interest are classified as to whether they could represent miRNAs targeting this mRNA. Our method identifies all known cases of spliced miRNAs in rice, and a previously undiscovered miRNA in maize which is supported by an expressed sequence tag (EST). SplamiR permits identification of spliced miRNAs for a given target mRNA in many plant genomes. AVAILABILITY The program is freely available at http://www.uni-jena.de/SplamiR.html.

[1]  S. Salzberg,et al.  GeneSplicer: a new computational method for splice site prediction. , 2001, Nucleic acids research.

[2]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[3]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[4]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature reviews genetics.

[5]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[6]  Olivier Panaud,et al.  Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice , 2008, BMC Plant Biology.

[7]  Yvan Saeys,et al.  Toward a gold standard for promoter prediction evaluation , 2009, Bioinform..

[8]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[9]  Jiayu Wen,et al.  Computational Prediction of Candidate miRNAs and their Targets from Medicago truncatula Non-Protein-Coding Transcripts , 2008, Silico Biol..

[10]  Jian-Kang Zhu,et al.  A miRNA Involved in Phosphate-Starvation Response in Arabidopsis , 2005, Current Biology.

[11]  N. Chua,et al.  Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. , 2008, Plant & cell physiology.

[12]  Kazuo Shinozaki,et al.  Specific interactions between Dicer-like proteins and HYL1/DRB- family dsRNA-binding proteins in Arabidopsis thaliana , 2004, Plant Molecular Biology.

[13]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[14]  D. Baulcombe,et al.  miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii , 2007, Nature.

[15]  Daniel G. Brown,et al.  ExonHunter: a comprehensive approach to gene finding , 2005, ISMB.

[16]  Hong-Wei Xue,et al.  Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsisw⃞ , 2005, The Plant Cell Online.

[17]  Yun Zheng,et al.  Transcriptome-wide identification of microRNA targets in rice. , 2010, The Plant journal : for cell and molecular biology.

[18]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[19]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[20]  Javier F. Palatnik,et al.  Specific effects of microRNAs on the plant transcriptome. , 2005, Developmental cell.

[21]  Gang Wu,et al.  Nuclear processing and export of microRNAs in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Javier F. Palatnik,et al.  Control of leaf morphogenesis by microRNAs , 2003, Nature.

[23]  Cathie Martin,et al.  SERRATE: a new player on the plant microRNA scene , 2006, EMBO reports.

[24]  Thomas Girke,et al.  Cloning and Characterization of MicroRNAs from Ricew⃞ , 2005, The Plant Cell Online.

[25]  Katherine E. Guill,et al.  A Genome-Wide Characterization of MicroRNA Genes in Maize , 2009, PLoS genetics.

[26]  Anders Krogh,et al.  Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants , 2007, PLoS Comput. Biol..

[27]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[28]  Weixiong Zhang,et al.  Characterization and Identification of MicroRNA Core Promoters in Four Model Species , 2007, PLoS Comput. Biol..

[29]  Ashutosh Kumar Singh,et al.  MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress , 2007, BMC Genomics.

[30]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[31]  R. Sunkar,et al.  Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance[W] , 2006, The Plant Cell Online.

[32]  C. X. Qiu,et al.  Heavy metal-regulated new microRNAs from rice. , 2009, Journal of inorganic biochemistry.

[33]  Detlef Weigel,et al.  miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana , 2009, Cell.

[34]  Panayiotis V. Benos,et al.  HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models , 2009, BMC Bioinformatics.

[35]  Adam M. Gustafson,et al.  microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants , 2005, Cell.

[36]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[37]  C. Helliwell,et al.  A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. , 2008, Genome research.

[38]  D. Bartel,et al.  Criteria for Annotation of Plant MicroRNAs , 2008, The Plant Cell Online.

[39]  T. Dresselhaus,et al.  The MADS Box Transcription Factor ZmMADS2 Is Required for Anther and Pollen Maturation in Maize and Accumulates in Apoptotic Bodies during Anther Dehiscence1 , 2004, Plant Physiology.

[40]  Yves Van de Peer,et al.  TAPIR, a web server for the prediction of plant microRNA targets, including target mimics , 2010, Bioinform..

[41]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[42]  P. Rouzé,et al.  Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Guanglin Li,et al.  Identification of novel stress-regulated microRNAs from Oryza sativa L. , 2010, Genomics.

[44]  Anders Krogh,et al.  Computational evidence for hundreds of non-conserved plant microRNAs , 2005, BMC Genomics.

[45]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[46]  Baohong Zhang,et al.  Bioinformatics Applications Note Data and Text Mining Target-align: a Tool for Plant Microrna Target Identification , 2022 .

[47]  Michael B. Stadler,et al.  MicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis[W][OA] , 2007, The Plant Cell Online.

[48]  Bin Liu,et al.  Loss of Function of OsDCL1 Affects MicroRNA Accumulation and Causes Developmental Defects in Rice1[w] , 2005, Plant Physiology.

[49]  Yun Zheng,et al.  Identification of novel and candidate miRNAs in rice by high throughput sequencing , 2008, BMC Plant Biology.

[50]  A. T. Freitas,et al.  Current tools for the identification of miRNA genes and their targets , 2009, Nucleic acids research.

[51]  M. Axtell,et al.  Evolution of plant microRNAs and their targets. , 2008, Trends in plant science.

[52]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[53]  W. Filipowicz,et al.  Pre-mRNA splicing in higher plants. , 2000, Trends in plant science.

[54]  L. Luo,et al.  Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. , 2010, Journal of experimental botany.

[55]  T. Demura,et al.  Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. , 2007, Plant & cell physiology.

[56]  Liang-Hu Qu,et al.  Identification of 20 microRNAs from Oryza sativa. , 2004, Nucleic acids research.

[57]  M. A. Rector,et al.  Endogenous and Silencing-Associated Small RNAs in Plants Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003210. , 2002, The Plant Cell Online.

[58]  G. Ruvkun,et al.  Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. , 1991, Genes & development.

[59]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[60]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[61]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[62]  Hong-Wei Xue,et al.  Characterization and expression profiles of miRNAs in rice seeds , 2008, Nucleic acids research.

[63]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[64]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[65]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[66]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[67]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[68]  A. Nag,et al.  miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis , 2009, Proceedings of the National Academy of Sciences.

[69]  Youn-sung Kim,et al.  microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. , 2005, The Plant journal : for cell and molecular biology.

[70]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[71]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[72]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[73]  Jonathan D. G. Jones,et al.  A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling , 2006, Science.

[74]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[75]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[76]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[77]  K. D. Kasschau,et al.  A MicroRNA as a Translational Repressor of APETALA 2 in Arabidopsis Flower Development , 2022 .

[78]  S. Moose,et al.  microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[80]  Martin Crespi,et al.  MicroRNA166 controls root and nodule development in Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[81]  N. Chua,et al.  MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development , 2005, The Plant Cell Online.

[82]  G. Varani,et al.  The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. , 2000, EMBO reports.

[83]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[84]  Bin Liu,et al.  Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs) , 2008, Proceedings of the National Academy of Sciences.

[85]  Yuichiro Watanabe,et al.  Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Wen-Hsiung Li,et al.  Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing1[W][OA] , 2009, Plant Physiology.

[87]  Gerhard Steger,et al.  NOVOMIR: De Novo Prediction of MicroRNA-Coding Regions in a Single Plant-Genome , 2010, Journal of nucleic acids.

[88]  Peter F. Stadler,et al.  Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.

[89]  Penny J. Beuning,et al.  The Roles of UmuD in Regulating Mutagenesis , 2010, Journal of nucleic acids.

[90]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[91]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[92]  Bin Zhang,et al.  Identification and verification of microRNA in wheat (Triticum aestivum) , 2008, Journal of Plant Research.

[93]  G. Theißen,et al.  The major clades of MADS-box genes and their role in the development and evolution of flowering plants. , 2003, Molecular phylogenetics and evolution.

[94]  Yan Li,et al.  Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post‐embryogenic development , 2006, FEBS letters.

[95]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[96]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[97]  Thomas Sandmann,et al.  Identification of Novel Drosophila melanogaster MicroRNAs , 2007, PloS one.

[98]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[99]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[100]  I. K. Jordan,et al.  Dual coding of siRNAs and miRNAs by plant transposable elements. , 2008, RNA.

[101]  Y. Qi,et al.  Rice MicroRNA Effector Complexes and Targets[C][W] , 2009, The Plant Cell Online.

[102]  N. Fedoroff,et al.  The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.