Algorithmically complex residually finite groups

We construct the first examples of algorithmically complex finitely presented residually finite groups and the first examples of finitely presented residually finite groups with arbitrarily large (recursive) Dehn functions, and arbitrarily large depth functions. The groups are solvable of class 3.

[1]  Mark Sapir,et al.  Asymptotic invariants, complexity of groups and related problems , 2010, 1012.1325.

[2]  D. Wise A Residually Finite Version of Rips's Construction , 2003 .

[3]  R. Remak Über die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren. , 1911 .

[4]  Gilbert Baumslag,et al.  Subgroups of Direct Products of Free Groups , 1984 .

[5]  S. M. Gersten,et al.  Dehn functions and l1-norms of nite presentations , 1989 .

[6]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[7]  Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms , 2003, math/0309121.

[8]  M. Kassabov,et al.  Bounding the residual finiteness of free groups , 2009, 0912.2368.

[9]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Bertram A. F. Wehrfritz On finitely generated soluble linear groups , 1980 .

[11]  Infinite solvable and finitely approximable groups , 1975 .

[12]  A.Vershik,et al.  The Word and Geodesic Problems in Free Solvable Groups , 2008, 0807.1032.

[13]  T. Riley,et al.  Hydra groups , 2010, 1002.1945.

[14]  J. Rotman An Introduction to the Theory of Groups , 1965 .

[15]  D. J. Collins Review: K. A. Mihajlova, (Problema vhozdenia did pramyh proizvedenij grupp):The Occurrence Problem for Direct Products of Groups , 1971 .

[16]  Friedrich Otto,et al.  Pseudo-Natural Algorithms for the Word Problem for Finitely Presented Monoids and Groups , 1985, J. Symb. Comput..

[17]  Mikhail Ershov,et al.  Golod-Shafarevich Groups: a Survey , 2012, Int. J. Algebra Comput..

[18]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  N. Nikolov,et al.  Finite index subgroups in profinite groups , 2003 .

[21]  Mark Sapir,et al.  Algorithmic problems in varieties of semigroups , 1988 .

[22]  O. Kharlampovich Universal theory of the class of finite nilpotent groups is unsolvable , 1983 .

[23]  Jean-Camille Birget,et al.  Infinite String Rewrite Systems and Complexity , 1998, J. Symb. Comput..

[24]  Mark V. Sapir,et al.  Length and Area Functions on Groups and Quasi-Isometric Higman Embeddings , 2001, Int. J. Algebra Comput..

[25]  A. M. Slobodskoi Unsolvability of the universal theory of finite groups , 1981 .

[26]  Leo F. Boron,et al.  Algorithms and recursive functions , 1970 .

[27]  Ralph McKenzie,et al.  An Elementary Construction of Unsolvable Word Problems in Group Theory , 1973 .

[28]  Richard J. Lipton,et al.  Word Problems Solvable in Logspace , 1977, JACM.

[29]  Khalid Bou-Rabee,et al.  Quantifying residual finiteness , 2008, 0807.0862.

[30]  B. Farb The Extrinsic Geometry of Subgroups and the Generalized Word Problem , 1994 .

[31]  Eliyahu Rips,et al.  Subgroups of small Cancellation Groups , 1982 .

[32]  Alexander Ushakov,et al.  The Word Problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable , 2011, 1102.2481.

[33]  S. M. Gersten,et al.  SOME DUALITY CONJECTURES FOR FINITE GRAPHS AND THEIR GROUP THEORETIC CONSEQUENCES , 2005, Proceedings of the Edinburgh Mathematical Society.

[34]  Mark V. Sapir,et al.  Algorithmic Problems in Varieties , 1995, Int. J. Algebra Comput..

[35]  E. Zelmanov SOLUTION OF THE RESTRICTED BURNSIDE PROBLEM FOR GROUPS OF ODD EXPONENT , 1991 .

[36]  N. Nikolov,et al.  Generation of polycyclic groups , 2007, 0711.3440.

[37]  A finitely generated residually finite group with an unsolvable word problem , 1974 .

[38]  Subgroups of finitely presented metabelian groups , 1973 .

[39]  Rita Gitik,et al.  On the Combination Theorem for Negatively Curved Groups , 1996, Int. J. Algebra Comput..

[40]  D. Wise,et al.  Cubulating graphs of free groups with cyclic edge groups , 2010 .

[41]  Daniel E Cohen,et al.  Combinatorial Group Theory: BIBLIOGRAPHY , 1989 .

[42]  Hans Ulrich Simon,et al.  Word problems for groups and contextfree recognition , 1979, FCT.

[43]  Polynomial Maps over p -Adics and Residual Properties of Mapping Tori of Group Endomorphisms , 2008, 0810.0443.

[44]  Stephan Waack On the parallel complexity of linear groups , 1991, RAIRO Theor. Informatics Appl..

[45]  Jean-Camille Birget,et al.  Isoperimetric and isodiametric functions of groups , 1998 .

[46]  S. M. Gersten,et al.  Geometric Group Theory: Isoperimetric and Isodiametric Functions of Finite Presentations , 1993 .

[47]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[48]  Gilbert Baumslag,et al.  A non-cyclic one-relator group all of whose finite quotients are cyclic , 1969, Journal of the Australian Mathematical Society.

[49]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[50]  Y. Ollivier,et al.  Cubulating random groups at density less than 1/6 , 2011 .

[51]  O G Harlampovič,et al.  A FINITELY PRESENTED SOLVABLE GROUP WITH UNSOLVABLE WORD PROBLEM , 1982 .

[52]  Verena Huber Dyson,et al.  A family of groups with nice word problems , 1974, Journal of the Australian Mathematical Society.

[53]  Charles F. Miller,et al.  Isoperimetric inequalities and the homology of groups , 1993 .

[54]  J. C. C. McKinsey,et al.  The decision problem for some classes of sentences without quantifiers , 1943, Journal of Symbolic Logic.

[55]  Miles Davis,et al.  A Note on Universal Turing Machines , 1970 .

[56]  E I Zel'manov,et al.  A SOLUTION OF THE RESTRICTED BURNSIDE PROBLEM FOR 2-GROUPS , 1992 .

[57]  Walter Parry,et al.  Growth series of some wreath products , 1992 .

[58]  H. Neumann Varieties of Groups , 1967 .

[59]  A. Yu. Ol'shanskii Almost Every Group is hyperbolic , 1992, Int. J. Algebra Comput..

[60]  N. Brady,et al.  Hyperbolic hydra , 2011, 1105.1535.

[61]  A. I. Mal'cev Algorithms and Recursive Functions , 1970 .