Machine learning and signed particles, an alternative and efficient way to simulate quantum systems

[1]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[2]  Jean Michel D. Sellier Combining Neural Networks and Signed Particles to Simulate Quantum Systems More Efficiently , 2017, ArXiv.

[3]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[4]  Kyle Mills,et al.  Deep learning and the Schrödinger equation , 2017, ArXiv.

[5]  J. M. Sellier,et al.  An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism , 2015 .

[6]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[7]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[8]  Jean Michel D. Sellier,et al.  A signed particle formulation of non-relativistic quantum mechanics , 2015, J. Comput. Phys..

[9]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[10]  K. G. Kapanova,et al.  A study of entangled systems in the many‐body signed particle formulation of quantum mechanics , 2017, 1705.00878.

[11]  Michiaki Arita,et al.  Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+ Atoms. , 2014, Journal of chemical theory and computation.

[12]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[13]  R. Feynman Simulating physics with computers , 1999 .

[14]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[15]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.