How accurately can the climate sensitivity to CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_{2}$$\end{

[1]  J. Gregory,et al.  A refined model for the Earth’s global energy balance , 2019, Climate Dynamics.

[2]  M. Long,et al.  El Niño–Like Physical and Biogeochemical Ocean Response to Tropical Eruptions , 2019, Journal of Climate.

[3]  M. Ringer,et al.  Seasonally variant low cloud adjustment over cool oceans , 2018, Climate Dynamics.

[4]  Jonathan M. Gregory,et al.  Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity , 2018, Geophysical Research Letters.

[5]  A. Dai,et al.  Contributions of Internal Variability and External Forcing to the Recent Pacific Decadal Variations , 2018, Geophysical Research Letters.

[6]  M. Holden,et al.  Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data , 2018, Earth System Dynamics.

[7]  Ken Takahashi,et al.  What Can the Internal Variability of CMIP5 Models Tell Us about Their Climate Sensitivity? , 2018, Journal of Climate.

[8]  C. Bitz,et al.  Radiative Feedbacks From Stochastic Variability in Surface Temperature and Radiative Imbalance , 2018, Geophysical Research Letters.

[9]  M. Collins,et al.  Model tropical Atlantic biases underpin diminished Pacific decadal variability , 2018, Nature Climate Change.

[10]  L. Oreopoulos,et al.  Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity , 2018, Geophysical research letters.

[11]  B. Stevens,et al.  The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity , 2018 .

[12]  L. Leung,et al.  Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part I: Linear Response Function , 2018 .

[13]  S. Power,et al.  What can decadal variability tell us about climate feedbacks and sensitivity? , 2018, Climate Dynamics.

[14]  E. Guilyardi,et al.  Author Correction: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa , 2018, Nature Communications.

[15]  T. Andrews,et al.  What Climate Sensitivity Index Is Most Useful for Projections? , 2018 .

[16]  G. Schmidt,et al.  Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations , 2018 .

[17]  M. Webb,et al.  The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming , 2018 .

[18]  Ming Zhao,et al.  The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures , 2017 .

[19]  J. Gregory,et al.  Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget , 2017, Proceedings of the National Academy of Sciences.

[20]  G. Hegerl,et al.  Beyond equilibrium climate sensitivity , 2017 .

[21]  D. Battisti,et al.  Relative roles of surface temperature and climate forcing patterns in the inconstancy of radiative feedbacks , 2017 .

[22]  Chris D. Jones,et al.  Effective radiative forcing from historical land use change , 2017, Climate Dynamics.

[23]  M. Watanabe,et al.  The post‐2002 global surface warming slowdown caused by the subtropical Southern Ocean heating acceleration , 2017 .

[24]  S. Xie,et al.  What Caused the Global Surface Warming Hiatus of 1998–2013? , 2017, Current Climate Change Reports.

[25]  K. Armour Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks , 2017 .

[26]  Matthew D. Palmer,et al.  Reconciling Estimates of Ocean Heating and Earth’s Radiation Budget , 2017, Current Climate Change Reports.

[27]  S. Klein,et al.  Impact of decadal cloud variations on the Earth/'s energy budget , 2016 .

[28]  Aixue Hu,et al.  Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends , 2016 .

[29]  S. Bony,et al.  Prospects for narrowing bounds on Earth's equilibrium climate sensitivity , 2016, Earth's future.

[30]  Adam A. Scaife,et al.  Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown , 2016 .

[31]  Robert Pincus,et al.  The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental Protocol for CMIP6 , 2016 .

[32]  Piers M. Forster,et al.  Inference of Climate Sensitivity from Analysis of Earth's Energy Budget , 2016 .

[33]  A. Pier Siebesma,et al.  The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. , 2016 .

[34]  T. Andrews,et al.  Variation in climate sensitivity and feedback parameters during the historical period , 2016 .

[35]  G. Schmidt,et al.  Implications for climate sensitivity from the response to individual forcings , 2016 .

[36]  T. Andrews,et al.  Small global-mean cooling due to volcanic radiative forcing , 2016, Climate Dynamics.

[37]  R. Portmann,et al.  A Temporal Kernel Method to Compute Effective Radiative Forcing in CMIP5 Transient Simulations , 2016 .

[38]  B. Stevens,et al.  Amplification of El Niño by cloud longwave coupling to atmospheric circulation , 2016 .

[39]  Randal J. Barnes,et al.  Estimating linear trends: Simple linear regression versus epoch differences , 2015 .

[40]  S. Klein,et al.  The relationship between interannual and long‐term cloud feedbacks , 2015 .

[41]  T. Andrews,et al.  The inconstancy of the transient climate response parameter under increasing CO2 , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  T. Frölicher,et al.  Sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols , 2015 .

[43]  M. England,et al.  Effects of volcanism on tropical variability , 2015 .

[44]  Raymond T. Pierrehumbert,et al.  Feedback temperature dependence determines the risk of high warming , 2015 .

[45]  B. Soden,et al.  An Assessment of Direct Radiative Forcing, Radiative Adjustments, and Radiative Feedbacks in Coupled Ocean–Atmosphere Models* , 2015 .

[46]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[47]  J. Gregory,et al.  Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs , 2015, Climate Dynamics.

[48]  M. Webb,et al.  The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models , 2015 .

[49]  A. Timmermann,et al.  Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming , 2014 .

[50]  K. Taylor,et al.  Quantifying components of aerosol‐cloud‐radiation interactions in climate models , 2014 .

[51]  M. Webb,et al.  Global‐mean radiative feedbacks and forcing in atmosphere‐only and coupled atmosphere‐ocean climate change experiments , 2014 .

[52]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[53]  Richard P Allan,et al.  Changes in global net radiative imbalance 1985–2012 , 2014, Geophysical research letters.

[54]  D. Shindell Inhomogeneous forcing and transient climate sensitivity , 2014 .

[55]  Agus Santoso,et al.  Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus , 2014 .

[56]  T. Andrews Using an AGCM to Diagnose Historical Effective Radiative Forcing and Mechanisms of Recent Decadal Climate Change , 2014 .

[57]  Andrew C. Parnell,et al.  Modeling sea-level change using errors-in-variables integrated Gaussian processes , 2013, 1312.6761.

[58]  Kefei Zhang,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[59]  Thorsten Mauritsen,et al.  Robust increase in equilibrium climate sensitivity under global warming , 2013 .

[60]  W. Collins,et al.  Evaluation of climate models , 2013 .

[61]  L. Bengtsson,et al.  Determination of a lower bound on Earth's climate sensitivity , 2013 .

[62]  John Abraham,et al.  A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change , 2013, Reviews of Geophysics.

[63]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[64]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[65]  Peter A. Stott,et al.  Attribution of observed historical near‒surface temperature variations to anthropogenic and natural causes using CMIP5 simulations , 2013 .

[66]  Benjamin M. Sanderson,et al.  Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part II: Variation of Climate Feedbacks and Sensitivity with Forcing , 2013 .

[67]  T. Andrews,et al.  Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models , 2013 .

[68]  Jason Lowe,et al.  Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections , 2013, Climate Dynamics.

[69]  Andrew E. Dessler,et al.  Observations of Climate Feedbacks over 2000–10 and Comparisons to Climate Models , 2013 .

[70]  Cecilia M. Bitz,et al.  Time-Varying Climate Sensitivity from Regional Feedbacks , 2012 .

[71]  Jason Lowe,et al.  A step-response approach for predicting and understanding non-linear precipitation changes , 2012, Climate Dynamics.

[72]  Benjamin M. Sanderson,et al.  Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings , 2012 .

[73]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[74]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[75]  J. Hansen,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[76]  Jonathan M. Gregory,et al.  A step‐response simple climate model to reconstruct and interpret AOGCM projections , 2011 .

[77]  T. Delworth,et al.  Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing , 2010 .

[78]  Jonathan M. Gregory,et al.  Transient climate response estimated from radiative forcing and observed temperature change , 2008 .

[79]  Eric Lajeunesse,et al.  Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers , 2008 .

[80]  James J. Hack,et al.  A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , 2008 .

[81]  T. Reichler,et al.  How Well Do Coupled Models Simulate Today's Climate? , 2008 .

[82]  G. Haug,et al.  Volcanoes and ENSO over the Past Millennium , 2007 .

[83]  Jonathan M. Gregory,et al.  The impact of natural and anthropogenic forcings on climate and hydrology since 1550 , 2006 .

[84]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[85]  J. Gregory,et al.  The Climate Sensitivity and Its Components Diagnosed from Earth Radiation Budget Data , 2005 .

[86]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[87]  Manoj Joshi,et al.  An alternative to radiative forcing for estimating the relative importance of climate change mechanisms , 2003 .

[88]  S. Raper,et al.  An Observationally Based Estimate of the Climate Sensitivity , 2002 .

[89]  Larry W. Thomason,et al.  Climate forcings in Goddard Institute for Space Studies SI2000 simulations , 2002 .

[90]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[91]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[92]  S. Sherwood Adjustments in the forcing-feedback framework for understanding climate change , 2014 .

[93]  D. Easterling,et al.  Observations: Atmosphere and surface , 2013 .

[94]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[95]  S. Thompson,et al.  Correcting for regression dilution bias: comparison of methods for a single predictor variable , 2000 .

[96]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[97]  Syukuro Manabe,et al.  Equilib-rium climate change ? and its implications for the future , 1990 .