An optimization of Chebyshev's method

From Chebyshev's method, new third-order multipoint iterations are constructed with their efficiency close to that of Newton's method and the same region of accessibility.

[1]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[2]  Antonio Marquina,et al.  Recurrence relations for rational cubic methods I: The Halley method , 1990, Computing.

[3]  Ioannis K. Argyros,et al.  Results on the Chebyshev method in banach spaces , 1993 .

[4]  J. M. Gutiérrez,et al.  Geometric constructions of iterative functions to solve nonlinear equations , 2003 .

[5]  M. A. Hernández Chebyshev's Approximation Algorithms and Applications , 2001 .

[6]  J. E. Bailey,et al.  Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state , 1977 .

[7]  Sunethra Weerakoon,et al.  A variant of Newton's method with accelerated third-order convergence , 2000, Appl. Math. Lett..

[8]  M. A. Hernández The Newton Method for Operators with Hölder Continuous First Derivative , 2001 .

[9]  Kyle Kneisl,et al.  Julia sets for the super-Newton method, Cauchy's method, and Halley's method. , 2001, Chaos.

[10]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[11]  Jean-Luc Chabert,et al.  A history of algorithms: from the pebble to the microchip , 1999 .

[12]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[13]  J. L. Varona,et al.  Graphic and numerical comparison between iterative methods , 2002 .

[14]  Alicia Cordero,et al.  A class of multi-point iterative methods for nonlinear equations , 2008, Appl. Math. Comput..

[15]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .