Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity

We present results of a stability analysis of the lid-driven cavity flow based on classical C 0 finite element discretizations of the Navier-Stokes system. Using arc length continuation and subspace iteration to compute the eigenvalues of the tangent operator, we study the dependence of the bifurcation diagram and of the spectrum on the chosen discretization.

[1]  Roger Pierre,et al.  Localization of Hopf bifurcations in fluid flow problems , 1997 .

[2]  Robert Schreiber,et al.  Spurious solutions in driven cavity calculations , 1983 .

[3]  R. W. Thatcher Locally mass‐conserving Taylor–Hood elements for two‐ and three‐dimensional flow , 1990 .

[4]  J. Bell,et al.  Multiple discrete solutions of the incompressible steady-state Navier-Stokes equations , 1988 .

[5]  Roger Pierre Optimal selection of the bubble function in the stabilization of the P1-P1 element for the Stokes problem , 1995 .

[6]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[7]  P. M. Gresho,et al.  New finite element for Boussinesq fluids , 1979 .

[8]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[9]  M. Jardak,et al.  Old and New Results on the Two-Dimensional Poiseuille Flow , 1994 .

[10]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[11]  Martin H. Bloom,et al.  Computers & Fluids: Aims and Objectives , 1973 .

[12]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[13]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[14]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[15]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[16]  F. Hecht,et al.  Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$ , 1981 .

[17]  M. Fortin,et al.  Simple continuous pressure elements for two- and three-dimensional incompressible flows , 1987 .

[18]  Karl Gustafson,et al.  Hopf bifurcation in the driven cavity , 1990 .

[19]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[20]  H. Keller,et al.  Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems , 1985 .

[21]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[22]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .