Fast, Scalable, and Accurate Algorithms for Time-Series Analysis

Fast, Scalable, and Accurate Algorithms for Time-Series Analysis

[1]  Ingo Scholtes,et al.  Predicting scientific success based on coauthorship networks , 2014, EPJ Data Science.

[2]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[3]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[4]  Geoffrey I. Webb,et al.  Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification , 2014, 2014 IEEE International Conference on Data Mining.

[5]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[6]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[7]  Eamonn J. Keogh,et al.  CID: an efficient complexity-invariant distance for time series , 2013, Data Mining and Knowledge Discovery.

[8]  Christos Faloutsos,et al.  Adaptive, Hands-Off Stream Mining , 2003, VLDB.

[9]  Dragomir Anguelov,et al.  Mining The Stock Market : Which Measure Is Best ? , 2000 .

[10]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[11]  Pierre Gançarski,et al.  Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment , 2012, Theor. Comput. Sci..

[12]  Xindong Wu,et al.  10 Challenging Problems in Data Mining Research , 2006, Int. J. Inf. Technol. Decis. Mak..

[13]  Shion Guha,et al.  Following bibliometric footprints: the ACM digital library and the evolution of computer science , 2013, JCDL '13.

[14]  J. Kronenfeld,et al.  Chronic illness and health-seeking information on the Internet , 2007, Health.

[15]  Peter Stagge,et al.  Recurrent neural networks for time series classification , 2003, Neurocomputing.

[16]  Shuai Wang,et al.  Mining of Moving Objects from Time-Series Images and its Application to Satellite Weather Imagery , 2004, Journal of Intelligent Information Systems.

[17]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[18]  Ani Nenkova,et al.  What Makes Writing Great? First Experiments on Article Quality Prediction in the Science Journalism Domain , 2013, TACL.

[19]  Tony R. Martinez,et al.  Instance Pruning Techniques , 1997, ICML.

[20]  Aristides Gionis,et al.  Estimating Number of Citations Using Author Reputation , 2007, SPIRE.

[21]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[22]  Amine Bermak,et al.  Gaussian process for nonstationary time series prediction , 2004, Comput. Stat. Data Anal..

[23]  Dimitrios Gunopulos,et al.  Iterative Incremental Clustering of Time Series , 2004, EDBT.

[24]  Ryen W. White,et al.  Studies of the onset and persistence of medical concerns in search logs , 2012, SIGIR '12.

[25]  Harish Karnick,et al.  Random Feature Maps for Dot Product Kernels , 2012, AISTATS.

[26]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[27]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[28]  M. Woodward,et al.  Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies , 2005, British Journal of Cancer.

[29]  C. Bradshaw,et al.  Predicting Publication Success for Biologists , 2013 .

[30]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[31]  Elmer V. Bernstam,et al.  Query Log Analysis in Biomedicine , 2008 .

[32]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[33]  R. J. Cline,et al.  Consumer health information seeking on the Internet: the state of the art. , 2001, Health education research.

[34]  Dennis DeCoste,et al.  Compact Random Feature Maps , 2013, ICML.

[35]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[36]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[37]  Timo Teräsvirta,et al.  POWER OF THE NEURAL NETWORK LINEARITY TEST , 1993 .

[38]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[39]  Yixin Chen,et al.  Multi-Scale Convolutional Neural Networks for Time Series Classification , 2016, ArXiv.

[40]  Nicholas A. Christakis,et al.  Eurekometrics: Analyzing the Nature of Discovery , 2011, PLoS Comput. Biol..

[41]  T. Zima,et al.  Early detection of sporadic pancreatic cancer: time for change. , 2017, European Journal of Gastroenterology and Hepathology.

[42]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[43]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[44]  Daniel Jurafsky,et al.  Studying the History of Ideas Using Topic Models , 2008, EMNLP.

[45]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[46]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[47]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[48]  Qi Huang,et al.  Gorilla: A Fast, Scalable, In-Memory Time Series Database , 2015, Proc. VLDB Endow..

[49]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[50]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[51]  Jianping Gou,et al.  A Local Mean-Based k-Nearest Centroid Neighbor Classifier , 2012, Comput. J..

[52]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[53]  Jun Hu,et al.  Scientometric analysis of the CHI proceedings , 2009, CHI.

[54]  Michael Goggins,et al.  Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages , 2015, Gut.

[55]  M. Moravcsik,et al.  Some Results on the Function and Quality of Citations , 1975 .

[56]  Lawrence D. Fu,et al.  Models for Predicting and Explaining Citation Count of Biomedical Articles , 2008, AMIA.

[57]  Eamonn J. Keogh,et al.  Prefix and Suffix Invariant Dynamic Time Warping , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[58]  Kylie A. Williams,et al.  How do Consumers Search for and Appraise Information on Medicines on the Internet? A Qualitative Study Using Focus Groups , 2003, Journal of medical Internet research.

[59]  James Caverlee,et al.  PageRank for ranking authors in co-citation networks , 2009, J. Assoc. Inf. Sci. Technol..

[60]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[61]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[62]  Christos Faloutsos,et al.  FTW: fast similarity search under the time warping distance , 2005, PODS.

[63]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[64]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[65]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[66]  M. Kimmey,et al.  Cost-effectiveness of pancreatic cancer screening in familial pancreatic cancer kindreds. , 2003, Gastrointestinal endoscopy.

[67]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[68]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[69]  Doug Downey,et al.  Models of Searching and Browsing: Languages, Studies, and Application , 2007, IJCAI.

[70]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[71]  George C. Runger,et al.  A time series forest for classification and feature extraction , 2013, Inf. Sci..

[72]  Patrick Schäfer,et al.  SFA: a symbolic fourier approximation and index for similarity search in high dimensional datasets , 2012, EDBT '12.

[73]  Qiang Fu,et al.  YADING: Fast Clustering of Large-Scale Time Series Data , 2015, Proc. VLDB Endow..

[74]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[75]  Peter M. A. Sloot,et al.  A hybrid approach to extract protein-protein interactions , 2011, Bioinform..

[76]  Shion Guha,et al.  Cross-campus collaboration: A scientometric and network case study of publication activity across two campuses of a single institution , 2013, J. Assoc. Inf. Sci. Technol..

[77]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[78]  Lutz Bornmann,et al.  What do citation counts measure? A review of studies on citing behavior , 2008, J. Documentation.

[79]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[80]  Trilce Estrada,et al.  Time Series Join on Subsequence Correlation , 2014, 2014 IEEE International Conference on Data Mining.

[81]  Pierre Gançarski,et al.  A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..

[82]  Yunhao Liu,et al.  Indexable PLA for Efficient Similarity Search , 2007, VLDB.

[83]  Gary Hsieh,et al.  The presentation of health-related search results and its impact on negative emotional outcomes , 2013, CHI.

[84]  Michael W. Mahoney,et al.  Revisiting the Nystrom Method for Improved Large-scale Machine Learning , 2013, J. Mach. Learn. Res..

[85]  Jie Tang,et al.  Citation count prediction: learning to estimate future citations for literature , 2011, CIKM '11.

[86]  Steve Goddard,et al.  Geospatial decision support for drought risk management , 2003, CACM.

[87]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[88]  Adam Meyerson,et al.  Fast and Accurate k-means For Large Datasets , 2011, NIPS.

[89]  Sudipto Guha,et al.  Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..

[90]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[91]  Daniel B. Horn,et al.  Six degrees of jonathan grudin: a social network analysis of the evolution and impact of CSCW research , 2004, CSCW.

[92]  J. Everhart,et al.  Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. , 1995, JAMA.

[93]  Ryen W. White,et al.  Cyberchondria: Studies of the escalation of medical concerns in Web search , 2009, TOIS.

[94]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[95]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[96]  A. Bayer,et al.  Some Correlates of a Citation Measure of Productivity in Science , 1966 .

[97]  Isabelle Guyon,et al.  Automatic Capacity Tuning of Very Large VC-Dimension Classifiers , 1992, NIPS.

[98]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[99]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[100]  Amit P. Sheth,et al.  Machine learning for Internet of Things data analysis: A survey , 2017, Digit. Commun. Networks.

[101]  Kuniaki Uehara,et al.  Extraction of Primitive Motion and Discovery of Association Rules from Human Motion Data , 2002, Progress in Discovery Science.

[102]  Ryen W. White,et al.  From health search to healthcare: explorations of intention and utilization via query logs and user surveys , 2014, J. Am. Medical Informatics Assoc..

[103]  Ryen W. White,et al.  From cookies to cooks: insights on dietary patterns via analysis of web usage logs , 2013, WWW.

[104]  Christopher McCarty,et al.  Predicting author h-index using characteristics of the co-author network , 2013, Scientometrics.

[105]  R H Hruban,et al.  Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival. A prospective, single-institution experience. , 1997, Annals of surgery.

[106]  David P. Woodruff,et al.  Subspace Embeddings for the Polynomial Kernel , 2014, NIPS.

[107]  Henry A. Kautz,et al.  Modeling Spread of Disease from Social Interactions , 2012, ICWSM.

[108]  Jöran Beel,et al.  Google Scholar's ranking algorithm: The impact of citation counts (An empirical study) , 2009, 2009 Third International Conference on Research Challenges in Information Science.

[109]  Filippo Menczer,et al.  Social Dynamics of Science , 2012, Scientific Reports.

[110]  Carlos Agón,et al.  Time-series data mining , 2012, CSUR.

[111]  Michael J. Paul Search and Breast Cancer : On Disruptive Shifts of Attention over Life Histories of an Illness , 2014 .

[112]  Geoffrey I. Webb,et al.  Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm , 2015, Knowledge and Information Systems.

[113]  Philip S. Yu,et al.  MALM: a framework for mining sequence database at multiple abstraction levels , 1998, CIKM '98.

[114]  Yoshihiko Hamamoto,et al.  Classifier design based on the use of nearest neighbor samples , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[115]  Eamonn J. Keogh,et al.  Time Series Classification under More Realistic Assumptions , 2013, SDM.

[116]  Eamonn J. Keogh,et al.  The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances , 2016, Data Mining and Knowledge Discovery.

[117]  Tao Jiang,et al.  On the Complexity of Multiple Sequence Alignment , 1994, J. Comput. Biol..

[118]  Qiang Wang,et al.  A multiresolution symbolic representation of time series , 2005, 21st International Conference on Data Engineering (ICDE'05).

[119]  Mary Frances Theofanos,et al.  Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries , 2003, Journal of medical Internet research.

[120]  Dennis Shasha,et al.  High Performance Discovery In Time Series: Techniques And Case Studies (Monographs in Computer Science) , 2004 .

[121]  Eamonn J. Keogh,et al.  Accelerating Dynamic Time Warping Clustering with a Novel Admissible Pruning Strategy , 2015, KDD.

[122]  Ge Yu,et al.  Similarity Match Over High Speed Time-Series Streams , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[123]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[124]  R H Hruban,et al.  Familial pancreatic cancer: a review. , 1996, Seminars in oncology.

[125]  Meena Mahajan,et al.  The Planar k-means Problem is NP-hard I , 2009 .

[126]  Steven S. Coughlin,et al.  Predictors of pancreatic cancer mortality among a large cohort of United States adults , 2000, Cancer Causes & Control.

[127]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[128]  E. Nyström Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .

[129]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[130]  Douglas W. Oard,et al.  Textual Data Mining to Support Science and Technology Management , 2000, Journal of Intelligent Information Systems.

[131]  Luis Gravano,et al.  Predicting the impact of scientific concepts using full‐text features , 2016, J. Assoc. Inf. Sci. Technol..

[132]  Tim Oates,et al.  Time series classification from scratch with deep neural networks: A strong baseline , 2016, 2017 International Joint Conference on Neural Networks (IJCNN).

[133]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[134]  Eamonn J. Keogh,et al.  Clustering of time-series subsequences is meaningless: implications for previous and future research , 2004, Knowledge and Information Systems.

[135]  Dimitrios Gunopulos,et al.  Indexing Multidimensional Time-Series , 2004, The VLDB Journal.

[136]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[137]  Geoffrey E. Hinton,et al.  Learning Multilevel Distributed Representations for High-Dimensional Sequences , 2007, AISTATS.

[138]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[139]  Carl Lagoze,et al.  The extraction of community structures from publication networks to support ethnographic observations of field differences in scientific communication , 2012, J. Assoc. Inf. Sci. Technol..

[140]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.

[141]  H. Kocher,et al.  Pancreatic Cancer , 2019, Methods in Molecular Biology.

[142]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[143]  Eric Horvitz,et al.  Predicting postpartum changes in emotion and behavior via social media , 2013, CHI.

[144]  Feng Gao,et al.  A survey of Internet utilization among patients with cancer , 2011, Supportive Care in Cancer.

[145]  Ambuj K. Singh,et al.  Dimensionality Reduction for Similarity Searching in Dynamic Databases , 1999, Comput. Vis. Image Underst..

[146]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[147]  Philip S. Yu,et al.  Detecting Leaders from Correlated Time Series , 2010, DASFAA.

[148]  Ben Taskar,et al.  Structured Determinantal Point Processes , 2010, NIPS.

[149]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[150]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[151]  Eamonn J. Keogh,et al.  Clustering Time Series Using Unsupervised-Shapelets , 2012, 2012 IEEE 12th International Conference on Data Mining.

[152]  Brendan T. O'Connor,et al.  Predicting a Scientific Community’s Response to an Article , 2011, EMNLP.

[153]  Christos Faloutsos,et al.  BRAID: stream mining through group lag correlations , 2005, SIGMOD '05.

[154]  Stevan Harnad,et al.  Earlier Web Usage Statistics as Predictors of Later Citation Impact , 2005, J. Assoc. Inf. Sci. Technol..

[155]  Christos Faloutsos,et al.  Efficiently supporting ad hoc queries in large datasets of time sequences , 1997, SIGMOD '97.

[156]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[157]  Ryen W. White,et al.  WWW 2007 / Track: Browsers and User Interfaces Session: Personalization Investigating Behavioral Variability in Web Search , 2022 .

[158]  Ryen W. White,et al.  Web-scale pharmacovigilance: listening to signals from the crowd , 2013, J. Am. Medical Informatics Assoc..

[159]  Ryen W. White,et al.  Detecting Devastating Diseases in Search Logs , 2016, KDD.

[160]  Lillian Lee,et al.  A Corpus of Sentence-level Revisions in Academic Writing: A Step towards Understanding Statement Strength in Communication , 2014, ACL.

[161]  Gourab Kundu,et al.  Concept-based analysis of scientific literature , 2013, CIKM.

[162]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[163]  Subhransu Maji,et al.  Max-margin additive classifiers for detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[164]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[165]  Shigeki Sagayama,et al.  Dynamic Time-Alignment Kernel in Support Vector Machine , 2001, NIPS.

[166]  Ryen W. White,et al.  Toward Enhanced Pharmacovigilance Using Patient-Generated Data on the Internet , 2014, Clinical pharmacology and therapeutics.

[167]  Eamonn J. Keogh,et al.  Experimental comparison of representation methods and distance measures for time series data , 2010, Data Mining and Knowledge Discovery.

[168]  Dit-Yan Yeung,et al.  Mixtures of ARMA models for model-based time series clustering , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[169]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[170]  Dimitrios Gunopulos,et al.  Embedding-based subsequence matching in time-series databases , 2011, TODS.

[171]  Eamonn J. Keogh,et al.  Logical-shapelets: an expressive primitive for time series classification , 2011, KDD.

[172]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[173]  Rong Jin,et al.  Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison , 2012, NIPS.

[174]  Ryen W. White,et al.  Screening for Pancreatic Adenocarcinoma Using Signals From Web Search Logs: Feasibility Study and Results. , 2016, Journal of oncology practice.

[175]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[176]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[177]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[178]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[179]  Kevin W. Boyack,et al.  Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches , 2011, PloS one.

[180]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[181]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[182]  Eamonn J. Keogh,et al.  HOT SAX: efficiently finding the most unusual time series subsequence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[183]  Anthony K. H. Tung,et al.  SpADe: On Shape-based Pattern Detection in Streaming Time Series , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[184]  Xiaoming Zhang,et al.  Future Influence Ranking of Scientific Literature , 2014, SDM.

[185]  Xiaozhe Wang,et al.  Characteristic-Based Clustering for Time Series Data , 2006, Data Mining and Knowledge Discovery.

[186]  Daryl E. Chubin,et al.  Content Analysis of References: Adjunct or Alternative to Citation Counting? , 1975 .

[187]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[188]  James Large,et al.  The Great Time Series Classification Bake Off: An Experimental Evaluation of Recently Proposed Algorithms. Extended Version , 2016, ArXiv.

[189]  Tassos Argyros,et al.  Efficient subsequence matching in time series databases under time and amplitude transformations , 2003, Third IEEE International Conference on Data Mining.

[190]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[191]  Vit Niennattrakul,et al.  Shape-Based Clustering for Time Series Data , 2012, PAKDD.

[192]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[193]  Hagit Shatkay,et al.  Approximate queries and representations for large data sequences , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[194]  Gustavo E. A. P. A. Batista,et al.  An Empirical Comparison of Dissimilarity Measures for Time Series Classification , 2013, 2013 Brazilian Conference on Intelligent Systems.

[195]  Dennis Shasha,et al.  StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time , 2002, VLDB.

[196]  Renée J. Miller,et al.  Similarity search over time-series data using wavelets , 2002, Proceedings 18th International Conference on Data Engineering.

[197]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[198]  Ryen W. White,et al.  Seeking and sharing health information online: comparing search engines and social media , 2014, CHI.

[199]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[200]  Min Song,et al.  Entitymetrics: Measuring the Impact of Entities , 2013, PloS one.

[201]  Eamonn J. Keogh,et al.  Making Time-Series Classification More Accurate Using Learned Constraints , 2004, SDM.

[202]  M. H. MacRoberts,et al.  The Negational Reference: or the Art of Dissembling , 1984 .

[203]  Dina Q. Goldin,et al.  On Similarity Queries for Time-Series Data: Constraint Specification and Implementation , 1995, CP.

[204]  Luis Gravano,et al.  k-Shape: Efficient and Accurate Clustering of Time Series , 2016, SGMD.

[205]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[206]  Philip S. Yu,et al.  HierarchyScan: a hierarchical similarity search algorithm for databases of long sequences , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[207]  M. Malafa,et al.  Early detection of pancreatic cancer: why, who, and how to screen. , 2008, Cancer control : journal of the Moffitt Cancer Center.

[208]  Andreas Krause,et al.  Fast and Provably Good Seedings for k-Means , 2016, NIPS.

[209]  R. Wears,et al.  Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. , 2002, JAMA.

[210]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[211]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[212]  George C. Runger,et al.  A Bag-of-Features Framework to Classify Time Series , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[213]  Pascal Vincent,et al.  Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.

[214]  M S Pepe,et al.  Phases of biomarker development for early detection of cancer. , 2001, Journal of the National Cancer Institute.

[215]  Christos Faloutsos,et al.  Fast Time Sequence Indexing for Arbitrary Lp Norms , 2000, VLDB.

[216]  J. R. Cole,et al.  Scientific output and recognition: a study in the operation of the reward system in science. , 1967, American sociological review.

[217]  Kristen Grauman,et al.  Kernelized Locality-Sensitive Hashing , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[218]  P. Maisonneuve,et al.  Epidemiology and risk factors for pancreatic cancer. , 2006, Best practice & research. Clinical gastroenterology.

[219]  Pierre Hansen,et al.  Cluster analysis and mathematical programming , 1997, Math. Program..

[220]  Dimitrios Gunopulos,et al.  Indexing Large Human-Motion Databases , 2004, VLDB.

[221]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[222]  Johannes Hönekopp,et al.  Future publication success in science is better predicted by traditional measures than by the h index , 2011, Scientometrics.

[223]  Tetsuji Kuboyama,et al.  A generalization of Haussler's convolution kernel: mapping kernel , 2008, ICML.

[224]  Dimitrios Gunopulos,et al.  INDEXING TIME-SERIES UNDER CONDITIONS OF NOISE , 2004 .

[225]  Andrew McCallum,et al.  Large-scale author coreference via hierarchical entity representations , 2013 .

[226]  Santo Fortunato,et al.  The case for caution in predicting scientists' future impact , 2013, ArXiv.

[227]  Jignesh M. Patel,et al.  An efficient and accurate method for evaluating time series similarity , 2007, SIGMOD '07.

[228]  L. Bornmann,et al.  The state of h index research , 2009, EMBO reports.

[229]  K. A. McKibbon,et al.  Prediction of citation counts for clinical articles at two years using data available within three weeks of publication: retrospective cohort study , 2008, BMJ : British Medical Journal.

[230]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[231]  Daniel Lemire,et al.  Measuring academic influence: Not all citations are equal , 2015, J. Assoc. Inf. Sci. Technol..

[232]  C. Ratanamahatana,et al.  Shape averaging under Time Warping , 2009, 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[233]  Clement T. Yu,et al.  Haar Wavelets for Efficient Similarity Search of Time-Series: With and Without Time Warping , 2003, IEEE Trans. Knowl. Data Eng..

[234]  Qiang Wang,et al.  A dimensionality reduction technique for efficient similarity analysis of time series databases , 2004, CIKM '04.

[235]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[236]  Philip S. Yu,et al.  Local Correlation Tracking in Time Series , 2006, Sixth International Conference on Data Mining (ICDM'06).

[237]  Suman Nath,et al.  DataGarage: Warehousing Massive Performance Data on Commodity Servers , 2010, Proc. VLDB Endow..

[238]  M. Zwahlen,et al.  Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies , 2008, The Lancet.

[239]  Carl Lagoze,et al.  A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation , 2009, Scientometrics.

[240]  Gareth J. Janacek,et al.  Clustering time series from ARMA models with clipped data , 2004, KDD.

[241]  Jason Lines,et al.  Time series classification with ensembles of elastic distance measures , 2015, Data Mining and Knowledge Discovery.

[242]  J Coste,et al.  Pancreatic tumors: comparison of dual-phase helical CT and endoscopic sonography. , 1998, AJR. American journal of roentgenology.

[243]  Ben Taskar,et al.  Nystrom Approximation for Large-Scale Determinantal Processes , 2013, AISTATS.

[244]  Jie Liu,et al.  Fast approximate correlation for massive time-series data , 2010, SIGMOD Conference.

[245]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[246]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[247]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[248]  M. Narasimha Murty,et al.  Citation prediction using time series approach KDD Cup 2003 (task 1) , 2003, SKDD.

[249]  Wesley W. Chu,et al.  An index-based approach for similarity search supporting time warping in large sequence databases , 2001, Proceedings 17th International Conference on Data Engineering.

[250]  Giorgio Cavallini,et al.  Alcohol and Smoking as Risk Factors in Chronic Pancreatitis and Pancreatic Cancer , 1999, Digestive Diseases and Sciences.

[251]  Amy Loutfi,et al.  A review of unsupervised feature learning and deep learning for time-series modeling , 2014, Pattern Recognit. Lett..

[252]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[253]  Zbigniew R. Struzik,et al.  Measuring time series similarity through large singular features revealed with wavelet transformation , 1999, Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99.

[254]  D Delbeke,et al.  EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. , 2000, Gastrointestinal endoscopy.

[255]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[256]  Yuan Li,et al.  Rotation-invariant similarity in time series using bag-of-patterns representation , 2012, Journal of Intelligent Information Systems.

[257]  Russell J. Funk,et al.  A Dynamic Network Approach to Breakthrough Innovation , 2012, ArXiv.

[258]  Li Wei,et al.  Fast time series classification using numerosity reduction , 2006, ICML.

[259]  Christopher D. Manning,et al.  Identifying Focus , Techniques and Domain of Scientific Papers , 2010 .

[260]  Michael I. Jordan,et al.  Predictive low-rank decomposition for kernel methods , 2005, ICML.

[261]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[262]  Jason Lines,et al.  An Experimental Evaluation of Nearest Neighbour Time Series Classification , 2014, ArXiv.

[263]  Yoshihiko Hamamoto,et al.  A local mean-based nonparametric classifier , 2006, Pattern Recognit. Lett..

[264]  Jason Lines,et al.  Classification of time series by shapelet transformation , 2013, Data Mining and Knowledge Discovery.

[265]  Yannis Manolopoulos,et al.  Feature-based classification of time-series data , 2001 .

[266]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[267]  Nick S. Jones,et al.  Highly Comparative Feature-Based Time-Series Classification , 2014, IEEE Transactions on Knowledge and Data Engineering.

[268]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[269]  Jason Lines,et al.  Ensembles of Elastic Distance Measures for Time Series Classification , 2014, SDM.

[270]  Nikos Mamoulis,et al.  Fast and Exact Warping of Time Series Using Adaptive Segmental Approximations , 2005, Machine Learning.

[271]  Claus Bahlmann,et al.  Online handwriting recognition with support vector machines - a kernel approach , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[272]  R H Hruban,et al.  Progression model for pancreatic cancer. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[273]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[274]  Nir Ailon,et al.  Streaming k-means approximation , 2009, NIPS.

[275]  Eamonn J. Keogh,et al.  Time series shapelets: a new primitive for data mining , 2009, KDD.

[276]  A. Kulkarni,et al.  Characteristics Associated with Citation Rate of the Medical Literature , 2007, PloS one.

[277]  Suvrit Sra,et al.  Fast DPP Sampling for Nystrom with Application to Kernel Methods , 2016, ICML.

[278]  Aristides Gionis,et al.  Correlating financial time series with micro-blogging activity , 2012, WSDM '12.

[279]  Ivor W. Tsang,et al.  Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.

[280]  Eamonn J. Keogh,et al.  Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data , 2011, 2011 IEEE 11th International Conference on Data Mining.

[281]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[282]  L. Gupta,et al.  Nonlinear alignment and averaging for estimating the evoked potential , 1996, IEEE Transactions on Biomedical Engineering.

[283]  Lars Schmidt-Thieme,et al.  Learning time-series shapelets , 2014, KDD.

[284]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[285]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[286]  Hao Wang,et al.  Durable Queries over Historical Time Series , 2014, IEEE Transactions on Knowledge and Data Engineering.

[287]  Ryen W. White,et al.  Exploring Time-Dependent Concerns about Pregnancy and Childbirth from Search Logs , 2015, CHI.

[288]  Tommi S. Jaakkola,et al.  A new approach to analyzing gene expression time series data , 2002, RECOMB '02.

[289]  Vladimir Pavlovic,et al.  Discovering clusters in motion time-series data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[290]  Michael Collins,et al.  Learning Dictionaries for Named Entity Recognition using Minimal Supervision , 2014, EACL.

[291]  Johan A. K. Suykens,et al.  Least squares support vector machine classifiers: a large scale algorithm , 1999 .

[292]  Ada Wai-Chee Fu,et al.  Efficient time series matching by wavelets , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[293]  Max A. Little,et al.  Highly comparative time-series analysis: the empirical structure of time series and their methods , 2013, Journal of The Royal Society Interface.

[294]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[295]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[296]  Christopher Ré,et al.  ShortFuse: Biomedical Time Series Representations in the Presence of Structured Information , 2017, MLHC.

[297]  Nitesh V. Chawla,et al.  Will This Paper Increase Your h-index?: Scientific Impact Prediction , 2014, WSDM.

[298]  Frank Klawonn,et al.  Compensation of Translational Displacement in Time Series Clustering Using Cross Correlation , 2009, IDA.

[299]  Todd R. Ogden,et al.  Wavelet Methods for Time Series Analysis , 2002 .

[300]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[301]  Eugene Garfield,et al.  Can Nobel Prize Winners Be Predicted? , 2006 .

[302]  A M Goldstein,et al.  Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. , 1995, The New England journal of medicine.

[303]  Rohit J. Kate Using dynamic time warping distances as features for improved time series classification , 2016, Data Mining and Knowledge Discovery.

[304]  D. Pelleg,et al.  Patterns of Information-Seeking for Cancer on the Internet: An Analysis of Real World Data , 2012, PloS one.

[305]  Santo Fortunato,et al.  World citation and collaboration networks: uncovering the role of geography in science , 2012, Scientific Reports.

[306]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[307]  Concha Bielza,et al.  Predicting citation count of Bioinformatics papers within four years of publication , 2009, Bioinform..

[308]  Luis Gravano,et al.  Fast and Accurate Time-Series Clustering , 2017, ACM Trans. Database Syst..

[309]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[310]  G A Colditz,et al.  A prospective study of cigarette smoking and the risk of pancreatic cancer. , 1996, Archives of internal medicine.

[311]  Jimeng Sun,et al.  Streaming Pattern Discovery in Multiple Time-Series , 2005, VLDB.

[312]  Kurt Hornik,et al.  A Combination Scheme for Fuzzy Clustering , 2002, AFSS.

[313]  Pavlos Protopapas,et al.  Kernels for Periodic Time Series Arising in Astronomy , 2009, ECML/PKDD.

[314]  J K McLaughlin,et al.  Pancreatitis and the risk of pancreatic cancer. , 1993, The New England journal of medicine.

[315]  Tomoko Matsui,et al.  A Kernel for Time Series Based on Global Alignments , 2006, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.