A Particle-Partition of Unity Method Part VII: Adaptivity

This paper is concerned with the adaptive multilevel solution of elliptic partial differential equations using the partition of unity method. While much of the work on meshfree methods is concerned with convergence-studies, the issues of fast solution techniques for the discrete system of equations and the construction of optimal order algorithms are rarely addressed. However, the treatment of large scale real-world problems by meshfree techniques will become feasible only with the availability of fast adaptive solvers. The adaptive multilevel solver proposed in this paper is a main step toward this goal. In particular, we present an h-adaptive multilevel solver for the partition of unity method which employs a subdomain-type error indicator to control the refinement and an efficient multilevel solver within a nested iteration approach. The results of our numerical experiments in two and three space dimensions clearly show the efficiency of the proposed scheme.

[1]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[4]  P. Oswald,et al.  A Particle-Partition of Unity Method Part VI: A p -robust Multilevel Solver , 2005 .

[5]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part III: A Multilevel Solver , 2002, SIAM J. Sci. Comput..

[6]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[7]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[8]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[9]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[10]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[11]  Lydia Kronsjö,et al.  On the design of nested iterations for elliptic difference equations , 1972 .

[12]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[13]  David Eppstein,et al.  Provably Good Mesh Generation , 1994, J. Comput. Syst. Sci..

[14]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[15]  Marc Alexander Schweitzer,et al.  A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations , 2003, Lecture Notes in Computational Science and Engineering.

[16]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .