Occipital white matter tracts in human and macaque

We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex.

[1]  N. Sigala,et al.  Visual Categorization and Object Representation in Monkeys and Humans , 2002, Journal of Cognitive Neuroscience.

[2]  Karen F. LaRocque,et al.  Where is human V4? Predicting the location of hV4 and VO1 from cortical folding. , 2014, Cerebral cortex.

[3]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[4]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[5]  M. Catani,et al.  The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography , 2014, Cortex.

[6]  F A Miles,et al.  Short latency ocular-following responses in man , 1990, Visual Neuroscience.

[7]  Bevil R. Conway,et al.  Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques , 2016, The Journal of Neuroscience.

[8]  Keith Heberlein,et al.  Imaging human connectomes at the macroscale , 2013, Nature Methods.

[9]  Andrew Simmons,et al.  A Lateralized Brain Network for Visuospatial Attention , 2012 .

[10]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[11]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[12]  Ariel Rokem,et al.  Human blindsight is mediated by an intact geniculo-extrastriate pathway , 2015, eLife.

[13]  Catherine Lebel,et al.  Six is enough? Comparison of diffusion parameters measured using six or more diffusion‐encoding gradient directions with deterministic tractography , 2012, Magnetic resonance in medicine.

[14]  A. Rokem,et al.  Data management to support reproducible research , 2015, 1502.06900.

[15]  Gregory D Horwitz,et al.  Spectral sensitivity differences between rhesus monkeys and humans: implications for neurophysiology. , 2014, Journal of neurophysiology.

[16]  Yundi Shi,et al.  A diffusion tensor MRI atlas of the postmortem rhesus macaque brain , 2015, NeuroImage.

[17]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[18]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[19]  Hugo Merchant,et al.  Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. , 2009, Journal of neurophysiology.

[20]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[21]  Dae-Shik Kim,et al.  Spatial resolution dependence of DTI tractography in human occipito-callosal region , 2006, NeuroImage.

[22]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[23]  K. Grill-Spector,et al.  The evolution of face processing networks , 2015, Trends in Cognitive Sciences.

[24]  Kenji Kawano,et al.  The visual motion detectors underlying ocular following responses in monkeys , 2006, Vision Research.

[25]  Hugues Duffau,et al.  Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data , 2010, Cortex.

[26]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[27]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[28]  FURTHER OBSERVATIONS ON ASSOCIATIONAL PATHWAYS IN THE BRAIN OF MACACA MULATTA , 1944 .

[29]  Doris Y. Tsao,et al.  Faces in Motion: Selectivity of Macaque and Human Face Processing Areas for Dynamic Stimuli , 2013, The Journal of Neuroscience.

[30]  R. Turner,et al.  Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI , 2012, Cerebral cortex.

[31]  Kendrick N Kay,et al.  Bottom-up and top-down computations in word- and face-selective cortex , 2017, eLife.

[32]  Yaniv Assaf,et al.  Short-Term Learning Induces White Matter Plasticity in the Fornix , 2013, The Journal of Neuroscience.

[33]  Matthew F. Glasser,et al.  Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography , 2013, NeuroImage.

[34]  H. J. S. Fernando,et al.  Grain sorting on sand ripples in heterogeneous sediments , 2008, J. Vis..

[35]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[36]  B. Wandell,et al.  Development of white matter and reading skills , 2012, Proceedings of the National Academy of Sciences.

[37]  Heidi Johansen-Berg,et al.  Motor Skill Learning Induces Changes in White Matter Microstructure and Myelination , 2013, The Journal of Neuroscience.

[38]  Tipu Z. Aziz,et al.  Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner , 2011, NeuroImage.

[39]  R. Douglas Fields,et al.  A new mechanism of nervous system plasticity: activity-dependent myelination , 2015, Nature Reviews Neuroscience.

[40]  Xueqi Cheng,et al.  A Network for Scene Processing in the Macaque Temporal Lobe , 2013, Neuron.

[41]  J. Jirout,et al.  The efferent intercortical connections of the superficial cortex of the temporal lobe, Macaca mulatta. , 1949, Journal of neuropathology and experimental neurology.

[42]  E. J. Curran A new association fiber tract in the cerebrum with remarks on the fiber tract dissection method of studying the brain , 1909 .

[43]  G. Egan,et al.  Preservation of Vision by the Pulvinar following Early-Life Primary Visual Cortex Lesions , 2015, Current Biology.

[44]  Ariel Rokem,et al.  Evaluating the Accuracy of Diffusion MRI Models in White Matter , 2015, PloS one.

[45]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[46]  E. Marder,et al.  The Neuron Doctrine, Redux , 2005, Science.

[47]  J. DiCarlo,et al.  Comparison of Object Recognition Behavior in Human and Monkey , 2014, The Journal of Neuroscience.

[48]  Doris Y. Tsao,et al.  Anatomical Connections of the Functionally Defined “Face Patches” in the Macaque Monkey , 2016, Neuron.

[49]  Damien J. Mannion,et al.  Color responsiveness argues against a dorsal component of human V4. , 2011, Journal of vision.

[50]  R. Goebel,et al.  Histological validation of high-resolution DTI in human post mortem tissue , 2015, Front. Neuroanat..

[51]  Anthony J. Sherbondy,et al.  Identifying the human optic radiation using diffusion imaging and fiber tractography. , 2008, Journal of vision.

[52]  Brian A Wandell,et al.  Biological development of reading circuits , 2013, Current Opinion in Neurobiology.

[53]  Susumu Mori,et al.  Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI , 2015, NeuroImage.

[54]  C. Wallraven,et al.  “Can touch this”: Cross‐modal shape categorization performance is associated with microstructural characteristics of white matter association pathways , 2017, Human brain mapping.

[55]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[56]  K. Rockland,et al.  Pathway-Specific Utilization of Synaptic Zinc in the Macaque Ventral Visual Cortical Areas , 2010, Cerebral cortex.

[57]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[58]  K. Uğurbil,et al.  High contrast and fast three‐dimensional magnetic resonance imaging at high fields , 1995, Magnetic resonance in medicine.

[59]  Katrin Amunts,et al.  Target sites for transcallosal fibers in human visual cortex – A combined diffusion and polarized light imaging study , 2015, Cortex.

[60]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[61]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[62]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.

[63]  C. Beckmann,et al.  A Brain Network Processing the Age of Faces , 2012, PloS one.

[64]  Brian A. Wandell,et al.  Ensemble Tractography , 2016, PLoS Comput. Biol..

[65]  Jonathan Winawer,et al.  A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. , 2016, Cerebral cortex.

[66]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[67]  K Cheng,et al.  Organization of Corticostriatal and Corticoamygdalar Projections Arising from the Anterior Inferotemporal Area TE of the Macaque Monkey: A Phaseolus vulgaris Leucoagglutinin Study , 1997, The Journal of Neuroscience.

[68]  B. Wandell,et al.  The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements , 2014, Proceedings of the National Academy of Sciences.

[69]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[70]  E. Corthout The eye and brain in macaque and man: Linear, areal and volumetric dimensions , 2014 .

[71]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[72]  Hugues Duffau,et al.  Cortex‐sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain , 2011, Journal of anatomy.

[73]  Andrew S. Bock,et al.  Visual callosal topography in the absence of retinal input , 2013, NeuroImage.

[74]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[75]  J. Dejerine Anatomie des centres nerveux , 1895 .

[76]  Brian A. Wandell,et al.  The posterior arcuate fasciculus and the vertical occipital fasciculus , 2017, Cortex.

[77]  R. L. Valois,et al.  Primate color vision. , 1968, Science.

[78]  Wim Vanduffel,et al.  The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster , 2014, The Journal of Neuroscience.

[79]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[80]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[81]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[82]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[83]  David C Lyon,et al.  The case for primate V3 , 2012, Proceedings of the Royal Society B: Biological Sciences.

[84]  K. Whittingstall,et al.  Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) , 2017, Human brain mapping.

[85]  W. McCulloch,et al.  FURTHER OBSERVATIONS ON ASSOCIATIONAL PATHWAYS IN THE BRAIN OF MACACA MULATTA , 1944 .

[86]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[87]  Arthur W. Toga,et al.  Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis , 2016, NeuroImage.

[88]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[89]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[90]  Gouki Okazawa,et al.  Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI , 2012, NeuroImage.

[91]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[92]  R. Fields White matter matters. , 2008, Scientific American.

[93]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[94]  Karla L. Miller,et al.  The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study , 2015, Brain Structure and Function.

[95]  Markus Diesmann,et al.  CoCoMac 2.0 and the future of tract-tracing databases , 2012, Front. Neuroinform..

[96]  Mark Hymers,et al.  Specialized and independent processing of orientation and shape in visual field maps LO1 and LO2 , 2013, Nature Neuroscience.

[97]  C. Wernicke,et al.  Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende , 1881 .

[98]  Karl J. Friston,et al.  Generative and recognition models for neuroanatomy , 2004, NeuroImage.

[99]  J. Rilling Human and nonhuman primate brains: Are they allometrically scaled versions of the same design? , 2006 .

[100]  James G. Herndon,et al.  Longitudinal diffusion tensor imaging and perfusion MRI investigation in a macaque model of neuro-AIDS: A preliminary study , 2011, NeuroImage.

[101]  Brian A. Wandell,et al.  Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections , 2013, Brain and Language.

[102]  M. Catani,et al.  The rises and falls of disconnection syndromes. , 2005, Brain : a journal of neurology.

[103]  B. Wandell,et al.  Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification , 2012, PloS one.

[104]  Zoltán Toroczkai,et al.  Why data coherence and quality is critical for understanding interareal cortical networks , 2013, NeuroImage.

[105]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[106]  Michel Thiebaut de Schotten,et al.  Atlas of Human Brain Connections , 2012 .

[107]  S.N. Sotiropoulos,et al.  High resolution whole brain diffusion imaging at 7T for the Human Connectome Project , 2015, NeuroImage.

[108]  Y. Assaf,et al.  Diffusion MRI of Structural Brain Plasticity Induced by a Learning and Memory Task , 2011, PloS one.

[109]  Gary S. Settles,et al.  Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle , 2005, J. Vis..

[110]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[111]  H. Duffau,et al.  Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle , 2011, Brain Structure and Function.

[112]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[113]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[114]  Alex R. Wade,et al.  fMRI measurements of color in macaque and human. , 2008, Journal of vision.

[115]  Guy A. Orban,et al.  Monkey Cortex through fMRI Glasses , 2014, Neuron.

[116]  Brian A. Wandell,et al.  The visual white matter: The application of diffusion MRI and fiber tractography to vision science , 2016, bioRxiv.

[117]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[118]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[119]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[120]  Georgios A. Keliris,et al.  Occipital white matter tracts in human and macaque , 2016, bioRxiv.

[121]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[122]  Franco Pestilli,et al.  White matter consequences of retinal receptor and ganglion cell damage. , 2014, Investigative ophthalmology & visual science.

[123]  Daniel Glen,et al.  Three-Dimensional Digital Template Atlas of the Macaque Brain , 2016, Cerebral cortex.

[124]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[125]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[126]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[127]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[128]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[129]  G. Horwitz,et al.  What studies of macaque monkeys have told us about human color vision , 2015, Neuroscience.

[130]  David A. Leopold,et al.  Functional MRI mapping of dynamic visual features during natural viewing in the macaque , 2015, NeuroImage.

[131]  J. Winawer,et al.  Human V4 and ventral occipital retinotopic maps , 2015, Visual Neuroscience.

[132]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[133]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[134]  Erick Jorge Canales-Rodríguez,et al.  Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. , 2011, Cerebral cortex.

[135]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[136]  Yupeng Wu,et al.  Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection , 2016, Brain Research.

[137]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[138]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[139]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[140]  Gouki Okazawa,et al.  Representation of the Material Properties of Objects in the Visual Cortex of Nonhuman Primates , 2014, The Journal of Neuroscience.

[141]  Bruno Rossion,et al.  The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex , 2016, The Journal of Neuroscience.

[142]  Hugues Duffau,et al.  Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients , 2013, Front. Syst. Neurosci..

[143]  H. Komatsu,et al.  Reciprocal connectivity of identified color-processing modules in the monkey inferior temporal cortex. , 2011, Cerebral cortex.

[144]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[145]  Timothy E. J. Behrens,et al.  Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography , 2013, The Journal of Neuroscience.

[146]  Marlene Behrmann,et al.  Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography , 2012, The Journal of Neuroscience.

[147]  Franco Pestilli,et al.  Multidimensional encoding of brain connectomes , 2017, Scientific Reports.

[148]  M Mishkin,et al.  Further evidence on the locus of the visual area in the temporal lobe of the monkey. , 1969, Experimental neurology.

[149]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[150]  I. Murakami,et al.  Neural Correlates of Induced Motion Perception in the Human Brain , 2012, The Journal of Neuroscience.

[151]  B. Wandell Clarifying Human White Matter. , 2016, Annual review of neuroscience.

[152]  Charlene C. Wu,et al.  White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles , 2016, Neuron.

[153]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[154]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[155]  Aspell Je Integration of visual and auditory motion perception in the human brain. , 2002 .

[156]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[157]  R. Fields,et al.  White matter in learning, cognition and psychiatric disorders , 2008, Trends in Neurosciences.

[158]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[159]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[160]  B. Wandell,et al.  Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration , 2010, Neuron.

[161]  A. Norcia,et al.  The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia. , 2015, Investigative ophthalmology & visual science.

[162]  Timothy Edward John Behrens,et al.  Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy , 2011, Front. Neuroinform..

[163]  Franco Pestilli,et al.  Sparse multiway decomposition for analysis and modeling of diffusion imaging and tractography , 2015, 1505.07170.

[164]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[165]  T P L Roberts,et al.  High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation , 2013, American Journal of Neuroradiology.

[166]  Michel Modo,et al.  MR Diffusion Histology and Micro-Tractography Reveal Mesoscale Features of the Human Cerebellum , 2013, The Cerebellum.

[167]  Jennifer M. D. Yoon,et al.  Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing , 2015, Neuron.

[168]  Steen Moeller,et al.  Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project , 2016, NeuroImage.

[169]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[170]  Maurizio Corbetta,et al.  Data-driven analysis of analogous brain networks in monkeys and humans during natural vision , 2012, NeuroImage.

[171]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[172]  O. Sporns,et al.  Dynamical consequences of lesions in cortical networks , 2008, Human brain mapping.

[173]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[174]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[175]  Eve Marder,et al.  Neuroscience. The neuron doctrine, redux. , 2005, Science.

[176]  Jeffrey D Sachs,et al.  The African green revolution. , 2008, Scientific American.

[177]  J. Martino,et al.  Wernicke perpendicular fasciculus and vertical portion of the superior longitudinal fasciculus: in reply. , 2013, Neurosurgery.

[178]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.