Chaotic characteristics of corona discharges in atmospheric air

A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses ob...

[1]  K. Fitzsimmons Threshold Field Studies of Various Positive Corona Phenomena , 1942 .

[2]  G. L. Weissler Positive and Negative Point-to-Plane Corona in Pure and Impure Hydrogen, Nitrogen, and Argon , 1943 .

[3]  A. D. Moore Electrostatics and its applications , 1973 .

[4]  Tan Wen,et al.  Adaptive regulation of uncertain chaos with dynamic neural networks , 2004 .

[5]  L. Loeb,et al.  Recent Developments in Analysis of the Mechanisms of Positive and Negative Coronas in Air , 1948 .

[6]  G. W. Trichel The Mechanism of the Negative Point to Plane Corona Near Onset , 1938 .

[7]  K. Adamiak,et al.  Corona discharge in the hyperbolic point-plane configuration: direct ionization criterion versus an approximate formulations , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[8]  C. Mayoux,et al.  Partial discharges in solid dielectrics and corona discharge phenomena , 1973 .

[9]  M. Nurujjaman,et al.  Parametric investigation of nonlinear fluctuations in a dc glow discharge plasma. , 2006, Chaos.

[10]  W. N. English Positive and Negative Point-to-Plane Corona in Air , 1948 .

[11]  J. Townsend,et al.  Electricity in gases , 2022 .

[12]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[13]  Guan Xinping,et al.  Synchronization in chaotic systems based on resilient controller , 2003 .

[14]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[15]  Gian Carlo Montanari,et al.  Optimum design of life tests for insulating materials, systems and components , 1991 .

[16]  C. Gallo Coronas and Gas Discharges in Electrophotography: A Review , 1975, IEEE Transactions on Industry Applications.

[17]  L. Loeb,et al.  Point‐to‐Plane Corona Onsets , 1949 .

[18]  A derivation of Warburg’s law for point to plane coronas , 1981 .

[19]  A. Kip,et al.  Pulses in Negative Point-to-Plane Corona , 1941 .

[20]  Lawrence H. Luessen,et al.  Electrical Breakdown and Discharges in Gases , 1983 .

[21]  Kimio Yamada,et al.  An empirical formula for negative corona discharge current in point-grid electrode geometry , 2004 .

[22]  Thomas F. Hayne Screen Controlled Corona Device (Scorotron) for Charging in a Xerographic Copier , 1976, IEEE Transactions on Industry Applications.

[23]  A. F. Kip,et al.  Onset Studies of Positive Point-to-Plane Corona in Air at Atmospheric Pressure , 1939 .

[24]  Harry J. White,et al.  Industrial Electrostatic Precipitation , 1963 .

[25]  A. F. Kip,et al.  Electrical Discharges in Air at Atmospheric Pressure The Nature of the Positive and Negative Point‐to‐Plane Coronas and the Mechanism of Spark Propagation , 1939 .