Control of globin gene transcription.

[1]  T. Maniatis,et al.  Rapid reprogramming of globin gene expression in transient heterokaryons , 1986, Cell.

[2]  T. Enver,et al.  Role for DNA replication in beta-globin gene activation , 1988, Molecular and cellular biology.

[3]  Mark S. Boguski,et al.  Structure and evolution of a human erythroid transcription factor , 1990, Nature.

[4]  T. Ley,et al.  Function of normal and mutated gamma-globin gene promoters in electroporated K562 erythroleukemia cells. , 1990, Blood.

[5]  J. D. Engel,et al.  A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion , 1981, Cell.

[6]  S. Weissman,et al.  Expression of the affected A gamma globin gene associated with Greek nondeletion hereditary persistence of fetal hemoglobin , 1987, Molecular and cellular biology.

[7]  M. Lieber,et al.  Regulated gene expression in transfected primary chicken erythrocytes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Superti-Furga,et al.  Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter , 1987, Cell.

[9]  G. Stamatoyannopoulos,et al.  Analysis of human hemoglobin switching in MEL × human fetal erythroid cell hybrids , 1986, Cell.

[10]  R. Evans,et al.  The steroid and thyroid hormone receptor superfamily. , 1988, Science.

[11]  W. Schaffner,et al.  A transcriptional enhancer located between adult beta-globin and embryonic epsilon-globin genes in chicken and duck. , 1987, Gene.

[12]  C. Cantor,et al.  Nucleosomes are phased along the mouse β-major globin gene in erythroid and nonerythroid cells , 1986, Cell.

[13]  G. Lanyon,et al.  Multiple origins of transcription in the 4.5 Kb upstream of the ϵ-globin gene , 1983, Cell.

[14]  P. Chambon,et al.  Cell-specific activity of the constituent elements of the simian virus 40 enhancer. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Stamatoyannopoulos,et al.  Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice , 1990, Nature.

[16]  G. Felsenfeld,et al.  Protein-binding sites within the 5' DNase I-hypersensitive region of the chicken alpha D-globin gene , 1987, Molecular and cellular biology.

[17]  G. Schaffner,et al.  The −117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma‐globin gene. , 1988, The EMBO journal.

[18]  J. Clegg,et al.  A MODEL FOR THE PERSISTENCE OR REACTIVATION OF FETAL HÆMOGLOBIN PRODUCTION , 1976, The Lancet.

[19]  A. Zahraoui,et al.  The chicken alpha-globin gene domain is transcribed into a 17-kilobase polycistronic RNA. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. E. Sippel,et al.  Chicken liver TGGCA protein purified by preparative mobility shift electrophoresis (PMSE) shows a 36.8 to 29.8 kd microheterogeneity. , 1987, Nucleic acids research.

[21]  A. Nienhuis,et al.  Human globin gene promoter sequences are sufficient for specific expression of a hybrid gene transfected into tissue culture cells , 1987, Molecular and cellular biology.

[22]  F. Grosveld,et al.  The human beta‐globin promoter; nuclear protein factors and erythroid specific induction of transcription. , 1988, The EMBO journal.

[23]  R. Schüle,et al.  Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor , 1988, Nature.

[24]  A. Bank,et al.  Expression of human gamma-globin genes in human erythroleukemia (K562) cells. , 1987, The Journal of biological chemistry.

[25]  N. Perkins,et al.  The purification of an erythroid protein which binds to enhancer and promoter elements of haemoglobin genes. , 1989, Nucleic acids research.

[26]  F. Costantini,et al.  Beta-globin enhancers target expression of a heterologous gene to erythroid tissues of transgenic mice , 1989, Molecular and cellular biology.

[27]  D. Higgs,et al.  Recombination at the human α-globin gene cluster: Sequence features and topological constraints , 1987, Cell.

[28]  T. Ley,et al.  A weak upstream promoter gives rise to long human β-globin RNA molecules , 1983 .

[29]  M. Vigneron,et al.  In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. , 1987, Genes & development.

[30]  D. Kioussis,et al.  β-Globin gene inactivation by DNA translocation in γβ-thalassaemi , 1983, Nature.

[31]  T. Evans,et al.  A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. , 1988, Journal of molecular biology.

[32]  W. C. Forrester,et al.  Molecular analysis of the human beta-globin locus activation region. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. C. Forrester,et al.  Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. , 1987, Nucleic acids research.

[34]  M. Vidal,et al.  A dominant control region from the human β-globin locus conferring integration site-independent gene expression , 1989, Nature.

[35]  R. Mantovani,et al.  An erythroid specific nuclear factor binding to the proximal CACCC box of the beta-globin gene promoter. , 1988, Nucleic acids research.

[36]  J. D. Engel,et al.  The beta-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. , 1989, Genes & Development.

[37]  J. Reiser,et al.  Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit β-globin gene in mouse 3T6 cells , 1983, Cell.

[38]  James Allan,et al.  Selective unfolding of erythroid chromatin in the region of the active β-globin gene , 1983, Nature.

[39]  P. Sharp,et al.  Function of a yeast TATA element-binding protein in a mammalian transcription system , 1988, Nature.

[40]  A. Sentenac,et al.  A yeast activity can substitute for the HeLa cell TATA box factor , 1988, Nature.

[41]  S. Humphries,et al.  Mouse globin gene expression in erythroid and non-erythroid tissues , 1976, Cell.

[42]  G. Stamatoyannopoulos,et al.  The human beta-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Higgs,et al.  Nuclear scaffold attachment sites in the human globin gene complexes. , 1988, The EMBO journal.

[44]  T. Hunter,et al.  Oncogene jun encodes a sequence-specific trans- activator similar to AP-1 , 1988, Nature.

[45]  W. Vainchenker,et al.  Megakaryocytic and erythrocytic lineages share specific transcription factors , 1990, Nature.

[46]  G. Felsenfeld,et al.  Analysis of the tissue-specific enhancer at the 3' end of the chicken adult beta-globin gene. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Knezetic,et al.  Identification and characterization of a chicken alpha-globin enhancer , 1989, Molecular and cellular biology.

[48]  F. Collins,et al.  Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin , 1988, Molecular and cellular biology.

[49]  F. Grosveld,et al.  The human beta‐globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. , 1988, The EMBO journal.

[50]  R. Davies,et al.  Aspergillus and mouse share a new class of 'zinc finger' protein. , 1989, Trends in genetics : TIG.

[51]  M. Sheffery,et al.  Purification and characterization of an erythroid cell-specific factor that binds the murine alpha- and beta-globin genes , 1989, Molecular and cellular biology.

[52]  R. Palmiter,et al.  High-level erythroid expression of human alpha-globin genes in transgenic mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Vidal,et al.  High-level, erythroid-specific expression of the human alpha-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes. , 1989, Genes & development.

[54]  A. Schechter,et al.  A common protein binds to two silencers 5′ to the human β-globin gene , 1989 .

[55]  Robert Tjian,et al.  Promoter-specific activation of RNA polymerase II transcription by Sp1 , 1986 .

[56]  T. Maniatis,et al.  Identification of DNA sequences required for transcription of the human α1-globin gene in a new SV40 host-vector system , 1981, Cell.

[57]  S. McKnight,et al.  Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene , 1986, Cell.

[58]  G. Superti-Furga,et al.  The deletion of the distal CCAAT box region of the A gamma-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT displacement protein. , 1989, Nucleic acids research.

[59]  B. Alter,et al.  Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[60]  F. Collins,et al.  The molecular genetics of human hemoglobin. , 1984, Progress in nucleic acid research and molecular biology.

[61]  C. S. Parker,et al.  A drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene , 1984, Cell.

[62]  F. Grosveld,et al.  The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner , 1989, Cell.

[63]  P. Charnay,et al.  Regulated expression of cloned human fetal A gamma-globin genes introduced into murine erythroleukemia cells. , 1986, European journal of biochemistry.

[64]  G. Kollias,et al.  Regulated expression of human A γ-, β-, and hybrid γβ-globin genes in transgenic mice: Manipulation of the developmental expression patterns , 1986, Cell.

[65]  J. Lingrel,et al.  Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression. , 1989, Nucleic acids research.

[66]  R. Roeder,et al.  Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region , 1985, Cell.

[67]  H. Martinson,et al.  Active beta-globin gene transcription occurs in methylated, DNase I-resistant chromatin of nonerythroid chicken cells , 1990, Molecular and cellular biology.

[68]  M. Yeckel,et al.  Nuclear extracts from globin-synthesizing cells enhance globin transcription in vitro , 1985, Nature.

[69]  R. Tjian,et al.  Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements , 1987, Cell.

[70]  C. D. Lewis,et al.  An erythrocyte-specific protein that binds to the poly(dG) region of the chicken beta-globin gene promoter. , 1988, Genes & development.

[71]  J. D. Engel,et al.  Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I , 1980, Cell.

[72]  P. Sharp,et al.  Human CCAAT-binding proteins have heterologous subunits , 1988, Cell.

[73]  C. D. Lewis,et al.  Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult β-globin gene: Nature of the binding domain , 1985, Cell.

[74]  Nicolas Mermod,et al.  A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs , 1988, Nature.

[75]  M. Sheffery,et al.  Identification and characterization of multiple erythroid cell proteins that interact with the promoter of the murine alpha-globin gene , 1988, Molecular and cellular biology.

[76]  F. Costantini,et al.  A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene. , 1987, Genes & development.

[77]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Y. Kan,et al.  Human beta-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Palmiter,et al.  Human gamma- to beta-globin gene switching in transgenic mice. , 1990, Genes & development.

[80]  James T. Elder,et al.  A developmentally stable chromatin structure in the human beta-globin gene cluster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Palmiter,et al.  Two 3' sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. S. Gross,et al.  Nuclease hypersensitive sites in chromatin. , 1988, Annual review of biochemistry.

[83]  J. D. Engel,et al.  A 3′ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene , 1986, Nature.

[84]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[85]  G. Felsenfeld,et al.  Bidirectional control of the chicken beta- and epsilon-globin genes by a shared enhancer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[86]  T. Ley,et al.  Differences in human α-, β- and δ-globin gene expression in monkey kidney cells , 1982, Cell.

[87]  F. Grosveld,et al.  A novel in vivo transcription assay demonstrates the presence of globin-inducing trans-acting factors in uninduced murine erythroleukemia cells , 1988, Molecular and cellular biology.

[88]  D. Housman,et al.  Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2 , 1988, Molecular and cellular biology.

[89]  R. Tjian,et al.  Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. , 1987, Science.

[90]  F. Grosveld,et al.  Nuclear protein factors and erythroid transcription of the human Aγ-globin gene , 1989 .

[91]  R. Palmiter,et al.  Human sickle hemoglobin in transgenic mice. , 1990, Science.

[92]  R. Taramelli,et al.  A gene controlling fetal hemoglobin expression in adults is not linked to the non‐alpha globin cluster. , 1983, The EMBO journal.

[93]  F. Collins,et al.  The -175T----C mutation increases promoter strength in erythroid cells: correlation with evolutionary conservation of binding sites for two trans-acting factors , 1990 .

[94]  P. Chambon,et al.  Digestion of the chicken beta‐globin gene chromatin with micrococcal nuclease reveals the presence of an altered nucleosomal array characterized by an atypical ladder of DNA fragments. , 1986, The EMBO journal.

[95]  M. Reitman,et al.  An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[96]  F. Grosveld,et al.  Definition of the minimal requirements within the human beta‐globin gene and the dominant control region for high level expression. , 1990, The EMBO journal.

[97]  A. Abeliovich,et al.  Identification of regulatory elements of human beta-like globin genes. , 1987, Progress in clinical and biological research.

[98]  F. Costantini,et al.  An embryonic pattern of expression of a human fetal globin gene in transgenic mice , 1986, Nature.

[99]  C. Benoist,et al.  A multiplicity of CCAAT box-binding proteins , 1987, Cell.

[100]  S. Orkin,et al.  Increased γ-globin expression in a nondeletion HPFH mediated by an erythroid-specif ic DNA-binding factor , 1989, Nature.