Xe2 gerade Rydberg states observed in the afterglow of a microplasma by laser spectroscopy of a(3)Σ(+)(u)(1(u), O(-)(u)) absorption in the green (545-555 nm) and near-infrared (675-800 nm).

Bound←bound transitions of the Xe dimer at small internuclear separation (R < 4.0 Å) have been observed in the 545-555 nm and 675-800 nm spectral regions by laser spectroscopy in the afterglow of a pulsed Xe microplasma with a volume of ∼160 nl. Transient suppression of Xe2 A(1)Σ(+)(u)(O(+)(u)) --> X(1)Σ(+)(g)(O(+)(g)) emission in the vacuum ultraviolet (∼172 nm), induced by laser excitation of Ω(g) ← a(3)Σ(+)(u)(1(u), O(-)(u)) [Rydberg←Rydberg] transitions of the molecule, has confirmed the existence of structure between 720 and 770 nm (reported by Killeen and Eden [J. Chem. Phys. 84, 6048 (1986)]) but also reveals red-degraded vibrational bands extending to wavelengths beyond 800 nm. Spectral simulations based on calculations of Franck-Condon factors for assumed Ω(g) ← a(3)Σ(+)(u) transitions involving Ω = 0(±),1 gerade Rydberg states suggest that the upper level primarily responsible for the observed spectrum is an Ω = 1 state correlated, in the separated atom limit, with Xe(5p(6) (1)S0) + Xe(5p(5) 6p) and built on a predominantly A(2)Π3/2g molecular ion core. Specifically, the spectroscopic constants for the upper state of the 1(g) ← 1(u), O(±)(u) absorptive transitions are determined to be Te = 13,000 ± 150 cm(-1), ω'(e) = 120 ± 10 cm(-1), ω'(e)x'(e) = 1.1 ± 0.4 cm(-1), De = 3300 ± 300 cm(-1), and ΔR(e) = R'(e) = R''(e) = 0.3 ± 0.1 Å which are in general agreement with the theoretical predictions of the pseudopotential hole-particle formalism, developed by Jonin and Spiegelmann [J. Chem. Phys. 117, 3059 (2002)], for both the (5)1g and (3)O(+)(g) states of Xe2. These spectra exhibit the most extensive vibrational development, and provide evidence for the first molecular core-switching transition, observed to date for any of the rare gas dimers at small R (<4 Ǻ). Experiments in the green (545-555 nm) also provide improved absorption spectra, relative to data reported in 1986 and 1999, associated with Xe2 Rydberg states derived from the Xe(7p) orbital.

[1]  S. Pratt,et al.  Photoelectron imaging of several 5d and 6p Rydberg states Xe2 and improving the Xe2(+) I(1∕2g) potential. , 2011, The Journal of chemical physics.

[2]  S. Pratt,et al.  Predissociation and dissociative ionization of Rydberg states of Xe2 and the photodissociation of Xe2+. , 2010, The Journal of chemical physics.

[3]  U. Hollenstein,et al.  Structure of the low-lying electronic states of from rotationally resolved photoelectron spectra , 2010 .

[4]  M. Reiher,et al.  On the R-dependence of the spin-orbit coupling constant: Potential energy functions of Xe(2) (+) by high-resolution photoelectron spectroscopy and ab initio quantum chemistry. , 2008, The Journal of chemical physics.

[5]  N. Timofeev,et al.  Study of the lowest electronic states of Xe2, XeKr, and XeAr molecules by the method of multiphoton resonance ionization , 2008 .

[6]  J. Eden,et al.  Gerade Rydberg states of Xe2 probed by laser spectroscopy in the afterglow of a Xe microplasma: Ωg←a3Σu+(1u,Ou-) transitions in the near-infrared (675–800 nm) , 2006 .

[7]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[8]  J. Eden,et al.  Xenon microdischarge at 300-800 torr: laser spectroscopy of Xe/sub 2/ a/sup 3//spl Sigma//sub u//sup +/(1/sub u/,0/sub u//sup -/) , 2005, IEEE Transactions on Plasma Science.

[9]  J. Eden,et al.  Rydberg states of the rare gas dimers , 2004 .

[10]  U. Hollenstein,et al.  High-resolution vacuum ultraviolet laser spectroscopy of the C 0+u ← X 0+g transition of Xe2 , 2004 .

[11]  F. Spiegelmann,et al.  Pseudopotential hole–particle formalism for excitations in xenon molecules and clusters. II. The electronic structure of Xe2* , 2002 .

[12]  J. Mitchell,et al.  Resonance-enhanced multiphoton-ionization-photoelectron study of the dissociative recombination and associative ionization of Xe + 2 , 2000 .

[13]  P. Laporte,et al.  Transient visible spectroscopy from (1)0u−, (1)1u and (1)0u+ states of Xe2∗ in the range 500–600 nm , 1999 .

[14]  Yujun Shi,et al.  Mass-resolved two-photon and photoelectron spectra of Xe2 in the Xe(4f) region above the first molecular ionization limit , 1998 .

[15]  T. Möller,et al.  Two-photon spectroscopy of xenon dimers in supersonic jets , 1997 .

[16]  R. Lipson,et al.  Mass-resolved two-photon spectra of Xe2 in the region of Xe*(5d). I. Vibronic analyses , 1997 .

[17]  R. Lipson,et al.  Mass-resolved two-photon spectra of Xe2 in the region of Xe*(5d). II. Dominant ion-core assignments by dispersive photoelectron spectroscopy , 1997 .

[18]  F. Spiegelmann,et al.  A pseudopotential hole‐particle treatment of neutral rare gas excimer systems. I. Formalism , 1996 .

[19]  K. Ito,et al.  High resolution threshold photoelectron spectroscopy of rare gas dimers , 1995 .

[20]  R. Lipson,et al.  Two‐photon time‐of‐flight spectra of Xe2 , 1994 .

[21]  J. Eden,et al.  Rotational analysis of the 7pσ 3Σ+g←a3Σ+u system of the Ar2 molecule , 1994 .

[22]  David S. Green,et al.  Multiphoton studies of jet‐cooled Xe2 near the Xe*5d[5/2]03 state: Characterization of the ground and excited state potential curves , 1994 .

[23]  Kim,et al.  Interactions of Ne2 Rydberg states with dissociation and Ne2+ (X2 Sigma u+, v+=0-2) ionization continua. , 1992, Physical review letters.

[24]  M. G. White,et al.  Vibrational spectroscopy of Xe+2 via pulsed field ionization , 1991 .

[25]  G. Hieftje,et al.  Side-on Photomultiplier Gating System for Thomson Scattering and Laser-Excited Atomic Fluorescence Spectroscopy , 1991 .

[26]  Kane,et al.  Observation of rotationally resolved inter-Rydberg-state spectra of 20Ne2 and 22Ne2 in the visible region ( lambda ~417 nm). , 1989, Physical review. A, General physics.

[27]  Stoicheff,et al.  Vacuum-ultraviolet laser spectroscopy: Radiative lifetimes of A1u states of Ar2, Kr2, Xe2, and dependence on internuclear distance. , 1988, Physical review. A, General physics.

[28]  D. Geohegan,et al.  Absorption spectrum of Kr2F(4 2Γ) in the near ultraviolet and visible (335≤λ≤600 nm): Comparison with Kr+2(1( 1/2 )u) measurements , 1988 .

[29]  S. Pratt,et al.  Gerade electronic states of Xe2 observed using resonantly enhanced multiphoton ionization , 1986 .

[30]  M. Ediger,et al.  Excitation spectroscopy of Kr2 rydberg states , 1986 .

[31]  Boris P. Stoicheff,et al.  Vacuum ultraviolet laser spectroscopy. II. Spectra of Xe2 and excited state constants , 1985 .

[32]  E. Matthias,et al.  Two‐photon excitation of xenon atoms and dimers in the energy region of the 5p56p configuration , 1981 .

[33]  P. Dehmer,et al.  Photoelectron spectrum of Xe2 and potential energy curves for Xe+2 , 1978 .

[34]  D. E. Freeman,et al.  Vacuum ultraviolet absorption spectra of binary rare gas mixtures and the properties of heteronuclear rare gas van der Waals molecules , 1977 .

[35]  P. Dehmer,et al.  Photoelectron spectrum of the Xe2 van der Waals molecule , 1977 .

[36]  K. Yoshino,et al.  Vacuum ultraviolet absorption spectrum of the van der Waals molecule Xe2. I. Ground state vibrational structure, potential well depth, and shape , 1974 .

[37]  J. A. Barker,et al.  Interatomic potentials for krypton and xenon , 1974 .

[38]  M. Castex,et al.  Absorption spectrum of the xenon molecule in the vacuum ultraviolet region , 1972 .

[39]  R. S. Mulliken Potential Curves of Diatomic Rare‐Gas Molecules and Their Ions, with Particular Reference to Xe2 , 1970 .

[40]  M. Zelikoff,et al.  Continuous Emission Spectrum of Xenon in the Vacuum Ultraviolet Region , 1954 .

[41]  J. Eden,et al.  Spectroscopic characterizations of the 3Σ+g and 3Πg components of nf complexes of Ne2 with n=4–6 , 1991 .

[42]  K. Killeen,et al.  Gerade Rydberg states and ns 3Σ+u(1u,0−u) photoionization spectra of the rare gas dimers (n=2–6) , 1986 .

[43]  J. Eden,et al.  Photoabsorption spectrum of Xe 2 + 1(1/2) u from 248 to 351 nm , 1983 .