Bounding the separable rank via polynomial optimization

We investigate questions related to the set SEPd consisting of the linear maps ρ acting on C⊗C that can be written as a convex combination of rank one matrices of the form xx∗⊗yy∗. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In particular we introduce bounds for the separable rank ranksep(ρ), defined as the smallest number of rank one states xx ∗ ⊗ yy∗ entering the decomposition of a separable state ρ. Our approach relies on the moment method and yields a hierarchy of semidefinite-based lower bounds, that converges to a parameter τsep(ρ), a natural convexification of the combinatorial parameter ranksep(ρ). A distinguishing feature is exploiting the positivity constraint ρ−xx∗⊗yy∗ 0 to impose positivity of a polynomial matrix localizing map, the dual notion of the notion of sum-of-squares polynomial matrices. Our approach extends naturally to the multipartite setting and to the real separable rank, and it permits strengthening some known bounds for the completely positive rank. In addition, we indicate how the moment approach also applies to define hierarchies of semidefinite relaxations for the set SEPd and permits to give new proofs, using only tools from moment theory, for convergence results on the DPS hierarchy from (A.C. Doherty, P.A. Parrilo and F.M. Spedalieri. Distinguishing separable and entangled states. Phys. Rev. Lett. 88(18):187904, 2002).

[1]  V. Paulsen,et al.  COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) By VERN PAULSEN: 300 pp., 47.50 (US$65.00), ISBN 0-521-81669-6 (Cambridge University Press, 2002) , 2004 .

[2]  Maho Nakata,et al.  A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[3]  Jie Wang,et al.  CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization , 2020, ArXiv.

[4]  Parikshit Shah,et al.  Guaranteed Tensor Decomposition: A Moment Approach , 2015, ICML.

[5]  A. Zalar,et al.  Moment problems for operator polynomials , 2012, 1209.1492.

[6]  Xinzhen Zhang,et al.  Positive Maps and Separable Matrices , 2015, SIAM J. Optim..

[7]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[8]  Hamza Fawzi,et al.  The sum-of-squares hierarchy on the sphere and applications in quantum information theory , 2019, Math. Program..

[9]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[10]  Jiawang Nie,et al.  Separability of Hermitian tensors and PSD decompositions , 2020, Linear and Multilinear Algebra.

[11]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[12]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[13]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  Ana de Almeida,et al.  Nonnegative Matrix Factorization , 2018 .

[16]  Pablo A. Parrilo,et al.  Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank , 2014, Math. Program..

[17]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[18]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[19]  安藤 毅 Completely positive matrices , 1991 .

[20]  Jiawang Nie,et al.  The A-Truncated K -Moment Problem , 2012 .

[21]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[22]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[23]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[24]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[25]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[26]  Guyan Ni,et al.  Separability discrimination and decomposition of m -partite quantum mixed states , 2019, 1912.08985.

[27]  Tim Netzer,et al.  Separability for mixed states with operator Schmidt rank two , 2019, Quantum.

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[29]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[30]  Yaroslav Shitov,et al.  A universality theorem for nonnegative matrix factorizations , 2016, 1606.09068.

[31]  Jiawang Nie,et al.  Symmetric Tensor Nuclear Norms , 2016, SIAM J. Appl. Algebra Geom..

[32]  Dilations and Hahn Decompositions for Linear Maps , 1981, Canadian Journal of Mathematics.

[33]  Mirjam Dür,et al.  Factorization and cutting planes for completely positive matrices by copositive projection , 2014, Math. Program..

[34]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[35]  Mathieu Dutour Sikiric,et al.  A simplex algorithm for rational cp-factorization , 2018, Mathematical Programming.

[36]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[37]  Makoto Yamashita,et al.  A high-performance software package for semidefinite programs: SDPA 7 , 2010 .

[38]  M. Owari,et al.  Power of symmetric extensions for entanglement detection , 2009, 0906.2731.

[39]  Lin Chen,et al.  Qubit-qudit states with positive partial transpose , 2012, 1210.0111.

[40]  Tim Netzer,et al.  Mixed states in one spatial dimension: Decompositions and correspondence with nonnegative matrices , 2019, Journal of Mathematical Physics.

[41]  Hamza Fawzi The Set of Separable States has no Finite Semidefinite Representation Except in Dimension 3×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-6 , 2019, Communications in Mathematical Physics.

[42]  Lin Chen,et al.  Dimensions, lengths and separability in finite-dimensional quantum systems , 2012, 1206.3775.

[43]  Xiaodi Wu,et al.  An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.

[44]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[45]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[46]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[47]  Monique Laurent,et al.  Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization , 2017, Found. Comput. Math..

[48]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[49]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[50]  Yaroslav Shitov The Complexity of Positive Semidefinite Matrix Factorization , 2017, SIAM J. Optim..

[51]  Ashish V. Thapliyal,et al.  Optimal decompositions of barely separable states , 1999, quant-ph/9904005.

[52]  Rekha R. Thomas,et al.  Positive semidefinite rank , 2014, Math. Program..

[53]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[54]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[55]  D. Kimsey An operator-valued generalization of Tchakaloffʼs theorem , 2014 .

[56]  Immanuel M. Bomze,et al.  From seven to eleven: Completely positive matrices with high cp-rank , 2014 .

[57]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[58]  Yaroslav Shitov A short proof that NMF is NP-hard , 2016, ArXiv.