Bounding the separable rank via polynomial optimization
暂无分享,去创建一个
Monique Laurent | Sander Gribling | Andries Steenkamp | M. Laurent | S. Gribling | Andries Steenkamp
[1] V. Paulsen,et al. COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) By VERN PAULSEN: 300 pp., 47.50 (US$65.00), ISBN 0-521-81669-6 (Cambridge University Press, 2002) , 2004 .
[2] Maho Nakata,et al. A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.
[3] Jie Wang,et al. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization , 2020, ArXiv.
[4] Parikshit Shah,et al. Guaranteed Tensor Decomposition: A Moment Approach , 2015, ICML.
[5] A. Zalar,et al. Moment problems for operator polynomials , 2012, 1209.1492.
[6] Xinzhen Zhang,et al. Positive Maps and Separable Matrices , 2015, SIAM J. Optim..
[7] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[8] Hamza Fawzi,et al. The sum-of-squares hierarchy on the sphere and applications in quantum information theory , 2019, Math. Program..
[9] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[10] Jiawang Nie,et al. Separability of Hermitian tensors and PSD decompositions , 2020, Linear and Multilinear Algebra.
[11] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[12] Samuel Burer,et al. On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..
[13] P. Parrilo,et al. Distinguishing separable and entangled states. , 2001, Physical review letters.
[14] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[15] Ana de Almeida,et al. Nonnegative Matrix Factorization , 2018 .
[16] Pablo A. Parrilo,et al. Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank , 2014, Math. Program..
[17] Etienne de Klerk,et al. Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..
[18] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[19] 安藤 毅. Completely positive matrices , 1991 .
[20] Jiawang Nie,et al. The A-Truncated K -Moment Problem , 2012 .
[21] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[22] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[23] Masakazu Kojima,et al. Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..
[24] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[25] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[26] Guyan Ni,et al. Separability discrimination and decomposition of m -partite quantum mixed states , 2019, 1912.08985.
[27] Tim Netzer,et al. Separability for mixed states with operator Schmidt rank two , 2019, Quantum.
[28] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[29] Stephen A. Vavasis,et al. On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..
[30] Yaroslav Shitov,et al. A universality theorem for nonnegative matrix factorizations , 2016, 1606.09068.
[31] Jiawang Nie,et al. Symmetric Tensor Nuclear Norms , 2016, SIAM J. Appl. Algebra Geom..
[32] Dilations and Hahn Decompositions for Linear Maps , 1981, Canadian Journal of Mathematics.
[33] Mirjam Dür,et al. Factorization and cutting planes for completely positive matrices by copositive projection , 2014, Math. Program..
[34] C. Fuchs,et al. Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.
[35] Mathieu Dutour Sikiric,et al. A simplex algorithm for rational cp-factorization , 2018, Mathematical Programming.
[36] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[37] Makoto Yamashita,et al. A high-performance software package for semidefinite programs: SDPA 7 , 2010 .
[38] M. Owari,et al. Power of symmetric extensions for entanglement detection , 2009, 0906.2731.
[39] Lin Chen,et al. Qubit-qudit states with positive partial transpose , 2012, 1210.0111.
[40] Tim Netzer,et al. Mixed states in one spatial dimension: Decompositions and correspondence with nonnegative matrices , 2019, Journal of Mathematical Physics.
[41] Hamza Fawzi. The Set of Separable States has no Finite Semidefinite Representation Except in Dimension 3×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-6 , 2019, Communications in Mathematical Physics.
[42] Lin Chen,et al. Dimensions, lengths and separability in finite-dimensional quantum systems , 2012, 1206.3775.
[43] Xiaodi Wu,et al. An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.
[44] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[45] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[46] A. Uhlmann. Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.
[47] Monique Laurent,et al. Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization , 2017, Found. Comput. Math..
[48] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[49] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[50] Yaroslav Shitov. The Complexity of Positive Semidefinite Matrix Factorization , 2017, SIAM J. Optim..
[51] Ashish V. Thapliyal,et al. Optimal decompositions of barely separable states , 1999, quant-ph/9904005.
[52] Rekha R. Thomas,et al. Positive semidefinite rank , 2014, Math. Program..
[53] John Watrous,et al. The Theory of Quantum Information , 2018 .
[54] Sevag Gharibian,et al. Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..
[55] D. Kimsey. An operator-valued generalization of Tchakaloffʼs theorem , 2014 .
[56] Immanuel M. Bomze,et al. From seven to eleven: Completely positive matrices with high cp-rank , 2014 .
[57] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[58] Yaroslav Shitov. A short proof that NMF is NP-hard , 2016, ArXiv.