PorSalsa User's Manual

This report describes the use of PorSalsa, a parallel-processing, finite-element-based, unstructured-grid code for the simulation of subsurface nonisothermal two-phase, two component flow through heterogeneous porous materials. PorSalsa can also model the advective-dispersive transport of any number of species. General source term and transport coefficient implementation greatly expands possible applications. Spatially heterogeneous flow and transport data are accommodated via a flexible interface. Discretization methods include both Galerkin and control volume finite element methods, with various options for weighting of nonlinear coefficients. Time integration includes both first and second-order predictor/corrector methods with automatic time step selection. Parallel processing is accomplished by domain decomposition and message passing, using MPI, enabling seamless execution on single computers, networked clusters, and massively parallel computers.

[1]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[2]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[3]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[4]  J. Bear Hydraulics of Groundwater , 1979 .

[5]  John N. Shadid,et al.  MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development , 1999 .

[6]  R. E. Sonntag,et al.  Fundamentals of classical thermodynamics , 1973 .

[7]  Amy Gilkey,et al.  BLOT: A mesh and curve plot program for the output of a finite element analysis , 1989 .

[8]  Bruce A. Robinson,et al.  Models and methods summary for the FEHMN application , 1996 .

[9]  Bruce A. Robinson,et al.  Software requirements, design, and verification and validation for the FEHM application - a finite-element heat- and mass-transfer code , 1997 .

[10]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[11]  Karen Dragon Devine,et al.  MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide , 1996 .

[12]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[13]  K. Pruess,et al.  TOUGH User's Guide , 1987 .

[14]  J. N. Shadid,et al.  LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media , 1997 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  R. Sani,et al.  On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions , 1980 .

[17]  G. L. Guymon Hydraulics of groundwater: Jacob Bear McGraw-Hill, New York, £18.55 , 1980 .

[18]  R. Genuchten CALCULATING TEE UNSATURATED HYDRAULIC CONDUCTIVITY WITH A NEW CLOSED-FORM ANALYTICAL MODEL , 1978 .

[19]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[20]  R. E. Sonntag,et al.  Fundamentals of Classical Thermodynamics (2nd Edition) , 1975 .

[21]  Ronald W. Falta,et al.  Analytical solutions for steady state gas flow to a soil vapor extraction well , 1992 .

[22]  R. H. Brooks,et al.  Properties of Porous Media Affecting Fluid Flow , 1966 .

[23]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[24]  Lee Atkinson,et al.  Using C , 1990 .