Discovery of Novel Cinchona-Alkaloid-Inspired Oxazatwistane Autophagy Inhibitors.

The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely-related oxazatricyclo[4.4.0.0]decane ("oxazatwistane") scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state-of-the-art C-H functionalization, and metal-catalyzed cross-coupling reactions as key late diversity-generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation.

[1]  P. Langer,et al.  SYNTHESIS OF OXAZATWISTANES AND THEIR HOMO- AND BISHOMO-ANALOGUES FROM QUINIDINE : MEDIUM RING SYSTEMS DERIVED FROM CINCHONA ALKALOIDS , 1998 .

[2]  T. Ueno,et al.  LC3 conjugation system in mammalian autophagy , 2004, The International Journal of Biochemistry & Cell Biology.

[3]  J. V. van Maarseveen,et al.  Cupreines and cupreidines: an emerging class of bifunctional cinchona organocatalysts. , 2006, Angewandte Chemie.

[4]  Tommaso Marcelli,et al.  Cupreine und Cupreidine: eine außergewöhnliche Klasse von bifunktionalen Cinchona‐Organokatalysatoren , 2006 .

[5]  D. Rubinsztein,et al.  Potential therapeutic applications of autophagy , 2007, Nature Reviews Drug Discovery.

[6]  D. Newman,et al.  Natural products as sources of new drugs over the last 25 years. , 2007, Journal of natural products.

[7]  T. Ueno,et al.  LC3 and Autophagy. , 2008, Methods in molecular biology.

[8]  Iris M. Oppel,et al.  Asymmetric synthesis of natural product inspired tricyclic benzopyrones by an organocatalyzed annulation reaction. , 2008, Angewandte Chemie.

[9]  E. White,et al.  The Double-Edged Sword of Autophagy Modulation in Cancer , 2009, Clinical Cancer Research.

[10]  V. Rohde,et al.  Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells , 2010, Neuro-oncology.

[11]  J. Taylor,et al.  VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD , 2010, Autophagy.

[12]  A. Cuervo,et al.  Autophagy gone awry in neurodegenerative diseases , 2010, Nature Neuroscience.

[13]  P. Baran,et al.  Direct C-H arylation of electron-deficient heterocycles with arylboronic acids. , 2010, Journal of the American Chemical Society.

[14]  Shengbing Huang,et al.  The Role of Autophagy in Cancer: Therapeutic Implications , 2011, Molecular Cancer Therapeutics.

[15]  H. Ke,et al.  Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13 , 2011, Cell.

[16]  D. Blackmond,et al.  Innate C-H trifluoromethylation of heterocycles , 2011, Proceedings of the National Academy of Sciences.

[17]  S. Wetzel,et al.  Biologie‐orientierte Synthese (BIOS) , 2011 .

[18]  Stefan Wetzel,et al.  Biology-oriented synthesis. , 2011, Angewandte Chemie.

[19]  R. Kurzrock,et al.  Autophagy as a target for anticancer therapy , 2011, Nature Reviews Clinical Oncology.

[20]  H. Waldmann,et al.  Lewis base catalyzed [4+2] annulation of electron-deficient chromone-derived heterodienes and acetylenes. , 2011, Chemistry.

[21]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[22]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[23]  Jihye Park,et al.  Autophagy-regulating small molecules and their therapeutic applications. , 2012, Chemical Society reviews.

[24]  N. Sach,et al.  Practical and innate C–H functionalization of heterocycles , 2012, Nature.

[25]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[26]  H. Waldmann,et al.  Discovery of inhibitors of the Wnt and Hedgehog signaling pathways through the catalytic enantioselective synthesis of an iridoid-inspired compound collection. , 2013, Angewandte Chemie.

[27]  R. Hicklin,et al.  A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. , 2013, Nature chemistry.

[28]  D. Blackmond,et al.  Radical-based regioselective C-H functionalization of electron-deficient heteroarenes: scope, tunability, and predictability. , 2013, Journal of the American Chemical Society.

[29]  S. Connon,et al.  C‐5′‐Substituted Cinchona Alkaloid Derivatives Catalyse the First Highly Enantioselective Dynamic Kinetic Resolutions of Azlactones by Thiolysis , 2013 .

[30]  Wei-dong Hu,et al.  Application and interpretation of current autophagy inhibitors and activators , 2013, Acta Pharmacologica Sinica.

[31]  Renxiao Wang,et al.  Small‐Molecule Regulators of Autophagy and Their Potential Therapeutic Applications , 2013, ChemMedChem.

[32]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[33]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[34]  M. Heinrich,et al.  Alkaloids as drug leads – A predictive structural and biodiversity-based analysis , 2014 .

[35]  Paul J Hergenrother,et al.  Natural products as starting points for the synthesis of complex and diverse compounds. , 2014, Natural product reports.

[36]  Herbert Waldmann,et al.  Biology-oriented synthesis: harnessing the power of evolution. , 2014, Journal of the American Chemical Society.

[37]  R. Hicklin,et al.  Synthesis of complex and diverse compounds through ring distortion of abietic acid. , 2014, Angewandte Chemie.

[38]  Thomas C. Chen,et al.  Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. , 2015, Neurosurgical focus.

[39]  Herbert Waldmann,et al.  Biology-oriented synthesis of a withanolide-inspired compound collection reveals novel modulators of hedgehog signaling. , 2015, Angewandte Chemie.

[40]  B. Levine,et al.  Autosis and autophagic cell death: the dark side of autophagy , 2014, Cell Death and Differentiation.

[41]  Kamal Kumar,et al.  Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. , 2016, Angewandte Chemie.

[42]  Alexander J. A. Cobb,et al.  Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts , 2016, Beilstein journal of organic chemistry.

[43]  Stefan Zimmermann,et al.  Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden‐ und Wirkstoffsuche , 2016 .