Second-Order-Cone Constraints for Extended Trust-Region Subproblems

The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic objective over the unit ball. In this paper, we consider extensions of TRS having extra constraints. When two parallel cuts are added to TRS, we show that the resulting nonconvex problem has an exact representation as a semidenite program with additional linear and second-order-cone constraints. For the case where an additional ellipsoidal constraint is added to TRS, resulting in the \two trust-region subproblem" (TTRS), we provide a new relaxation including second-order-cone constraints that strengthens the usual SDP relaxation.

[1]  Yonina C. Eldar,et al.  Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints , 2006, SIAM J. Optim..

[2]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[3]  Henry Wolkowicz,et al.  Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..

[4]  Ya-Xiang Yuan,et al.  Optimality Conditions for the Minimization of a Quadratic with Two Quadratic Constraints , 1997, SIAM J. Optim..

[5]  Zhi-Quan Luo,et al.  Approximation Algorithms for Quadratic Programming , 1998, J. Comb. Optim..

[6]  Y. Ye A new complexity result on minimization of a quadratic function with a sphere constraint , 1992 .

[7]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[8]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[9]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[10]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[11]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[12]  Shuzhong Zhang,et al.  New Results on Quadratic Minimization , 2003, SIAM J. Optim..

[13]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[14]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[15]  José Mario Martínez,et al.  Local Minimizers of Quadratic Functions on Euclidean Balls and Spheres , 1994, SIAM J. Optim..

[16]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[17]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[18]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[19]  Shuzhong Zhang,et al.  Strong Duality for the CDT Subproblem: A Necessary and Sufficient Condition , 2008, SIAM J. Optim..

[20]  M. R. Celis A TRUST REGION STRATEGY FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION (NONLINEAR PROGRAMMING, SEQUENTIAL QUADRATIC) , 1985 .

[21]  S. Burer,et al.  The MILP Road to MIQCP , 2012 .

[22]  H. Wolkowicz,et al.  Trust Region Problems and Nonsymmetric Eigenvalue Perturbations , 1994 .