On the physical relevance of random walks: an example of random walks on a randomly oriented lattice
暂无分享,去创建一个
[1] Palle E.T. Jorgensen,et al. Iterated Function Systems and Permutation Representations of the Cuntz Algebra , 1996 .
[2] The Infinite Self-Avoiding Walk in High Dimensions , 1989 .
[3] M. Westwater. On Edwards' model for long polymer chains , 1980 .
[4] J. Preskill. Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] Gordon Slade,et al. Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .
[6] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[7] T. W. Körner,et al. The Pleasures of Counting: Subtle is the Lord , 1996 .
[8] K. Symanzik. Euclidean Quantum field theory , 1969 .
[9] M. Aizenman,et al. Topological anomalies in the n dependence of the n-states Potts lattice gauge theory , 1984 .
[10] D. Vere-Jones. Markov Chains , 1972, Nature.
[11] Proof of the Conjecture that the Planar Self-Avoiding Walk has Root Mean Square Displacement Exponent 3/4 , 2001, math/0108077.
[12] E. Bolthausen,et al. A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks , 2001, math/0103218.
[13] NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELLING , 1994, cond-mat/9403065.
[14] S. Edwards. The statistical mechanics of polymers with excluded volume , 1965 .
[15] The flow space of a directed G-graph , 1993 .
[16] Gordon Slade,et al. A new inductive approach to the lace expansion for self-avoiding walks , 1997 .
[17] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[18] Thomas Spencer,et al. Self-avoiding walk in 5 or more dimensions , 1985 .
[19] A Connection between Multiresolution Wavelet Theory of Scale N and Representations of the Cuntz Algebra O N , 1996 .
[20] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[21] J. Renault,et al. Graphs, Groupoids, and Cuntz–Krieger Algebras , 1997 .
[22] F. Koukiou,et al. The Hausdorff dimension of the two-dimensional Edwards' random walk , 1989 .
[23] Random walks on randomly oriented lattices , 2001, math/0111305.
[24] Gelu Popescu,et al. Isometric dilations for infinite sequences of noncommuting operators , 1989 .
[25] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[26] Wolfgang Krieger,et al. A class ofC*-algebras and topological Markov chains , 1980 .
[27] Une preuve « standard » du principe d'invariance de Stoll , 1997 .
[28] I. Raeburn,et al. CUNTZ-KRIEGER ALGEBRAS OF DIRECTED GRAPHS , 1998 .
[29] P. Forcrand,et al. Critical behaviour of the Edwards random walk in two dimensions: a case where the fractal and Hausdorff dimensions are not equal , 1988 .
[30] J. Fröhlich,et al. The random walk representation of classical spin systems and correlation inequalities , 1982 .
[31] W. Woess. Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .
[32] Martin Gennis,et al. Explorations in Quantum Computing , 2001, Künstliche Intell..
[33] T. B. Grimley. The Configuration of Real Polymer Chains , 1951 .
[34] Alan D. Sokal,et al. Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory , 1992 .
[35] A. Holevo. Statistical structure of quantum theory , 2001 .