High performance computing for spherical conformal and Riemann mappings
暂无分享,去创建一个
Tsung-Ming Huang | Shing-Tung Yau | Willis Lin | Song-Sun Lin | S. Yau | X. Gu | Wen-Wei Lin | Willis Lin | T. Huang | Wei-Qiang Huang | Song-Sun Lin | Xianfeng David Gu | Wei-Qiang Huang
[1] T. Chan,et al. Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.
[2] Bruno Lévy,et al. Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..
[3] Pedro V. Sander,et al. Texture mapping progressive meshes , 2001, SIGGRAPH.
[4] Philip L. Bowers,et al. Coordinate systems for conformal cerebellar flat maps , 2000, NeuroImage.
[5] Klaus Ritter,et al. Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..
[6] R. Spigler,et al. Convergence analysis of the semi-implicit euler method for abstract evolution equations , 1995 .
[7] Guillermo Sapiro,et al. Conformal Surface Parameterization for Texture Mapping , 1999 .
[8] Mingzhu Liu,et al. CONVERGENCE AND STABILITY OF THE SEMI-IMPLICIT EULER METHOD WITH VARIABLE STEPSIZE FOR A LINEAR STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATION , 2010 .
[9] C. Kelley,et al. Convergence Analysis of Pseudo-Transient Continuation , 1998 .
[10] Pablo Groisman,et al. Totally Discrete Explicit and Semi-implicit Euler Methods for a Blow-up Problem in Several Space Dimensions , 2005, Computing.
[11] Tony DeRose,et al. Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.
[12] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[13] Shing-Tung Yau,et al. Computational Conformal Geometry , 2016 .
[14] Mark Meyer,et al. Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.
[15] Alla Sheffer,et al. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.
[16] Bruno Lévy,et al. ABF++: fast and robust angle based flattening , 2005, TOGS.
[17] Hiromasa Suzuki,et al. Three-dimensional geometric metamorphosis based on harmonic maps , 1998, The Visual Computer.
[18] Xin Li,et al. Curve Space: Classifying Curves On Surfaces , 2007, Commun. Inf. Syst..
[19] Yalin Wang,et al. Computing Conformal Invariants: Period Matrices , 2003, Commun. Inf. Syst..
[20] Ron Kikinis,et al. Conformal Geometry and Brain Flattening , 1999, MICCAI.
[21] Ming-Yong Pang,et al. Survey on Planar Parameterization of Triangular Meshes , 2010, 2010 International Conference on Measuring Technology and Mechatronics Automation.
[22] Z. Wen,et al. FAST AND ROBUST ALGORITHMS FOR HARMONIC ENERGY MINIMIZATION ON GENUS-0 SURFACES , 2011 .
[23] Mark Meyer,et al. Interactive geometry remeshing , 2002, SIGGRAPH.
[24] Shing-Tung Yau,et al. Surface classification using conformal structures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[25] Martin Isenburg,et al. Connectivity shapes , 2001, Proceedings Visualization, 2001. VIS '01..
[26] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[27] Lars Diening,et al. Semi-implicit Euler Scheme for Generalized Newtonian Fluids , 2006, SIAM J. Numer. Anal..
[28] S. Yau,et al. Global conformal surface parameterization , 2003 .
[29] C. T. Kelley,et al. Pseudo-Transient Continuation for Nonsmooth Nonlinear Equations , 2005, SIAM J. Numer. Anal..
[30] Paul M. Thompson,et al. Intrinsic brain surface conformal mapping using a variational method , 2004, SPIE Medical Imaging.
[31] K. Svoboda,et al. An alternative semi-implicit Euler method for the integration of highly stiff nonlinear differential equations , 1997 .
[32] David A. Rottenberg,et al. Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.