Colonization patterns of soil microbial communities in the Atacama Desert

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  J. DiRuggiero,et al.  Colonization patterns of soil microbial communities in the Atacama Desert , 2013, Microbiome.

[3]  I. Hawes,et al.  Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert. , 2013, Environmental microbiology reports.

[4]  Carmen Ascaso,et al.  Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars , 2013 .

[5]  C. Ascaso,et al.  Microorganisms in desert rocks: the edge of life on Earth. , 2012, International microbiology : the official journal of the Spanish Society for Microbiology.

[6]  R. Vicuña,et al.  Life at the dry edge: Microorganisms of the Atacama Desert , 2012, FEBS letters.

[7]  R. Navarro‐González,et al.  Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: A site with Mars-like soils , 2012 .

[8]  A. Davila,et al.  Novel water source for endolithic life in the hyperarid core of the Atacama Desert , 2012 .

[9]  S. K. Schmidt,et al.  The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region , 2012 .

[10]  Charles K. Lee,et al.  The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities , 2011, The ISME Journal.

[11]  L. Whyte,et al.  Life at the wedge: the activity and diversity of arctic ice wedge microbial communities. , 2012, Astrobiology.

[12]  R. Wing,et al.  Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile , 2012, Extremophiles.

[13]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[14]  Javier Gómez-Elvira,et al.  A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. , 2011, Astrobiology.

[15]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[16]  A. Davila,et al.  Microbial colonization of Ca‐sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars , 2011, Geobiology.

[17]  C. McKay,et al.  Hypolithic Cyanobacteria Supported Mainly by Fog in the Coastal Range of the Atacama Desert , 2011, Microbial Ecology.

[18]  S. Pointing,et al.  Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile , 2010, Extremophiles.

[19]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[20]  D. Möhlmann,et al.  Hygroscopic salts and the potential for life on Mars. , 2010, Astrobiology.

[21]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[22]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[23]  I. Pater,et al.  Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile , 2010 .

[24]  Rob Knight,et al.  PyNAST: a flexible tool for aligning sequences to a template alignment , 2009, Bioinform..

[25]  R. Knight,et al.  Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data , 2009, The ISME Journal.

[26]  M. Lau,et al.  Correction for Pointing et al., Highly specialized microbial diversity in hyper-arid polar desert , 2009, Proceedings of the National Academy of Sciences.

[27]  M. Bradford,et al.  Global patterns in belowground communities. , 2009, Ecology letters.

[28]  Mihai Pop,et al.  Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples , 2009, PLoS Comput. Biol..

[29]  F. Garcia-Pichel,et al.  Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. , 2009, International journal of systematic and evolutionary microbiology.

[30]  J. Asenjo,et al.  Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile , 2009, Antonie van Leeuwenhoek.

[31]  S. Reed,et al.  Fumarole-Supported Islands of Biodiversity within a Hyperarid, High-Elevation Landscape on Socompa Volcano, Puna de Atacama, Andes , 2008, Applied and Environmental Microbiology.

[32]  L. Whyte,et al.  Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. , 2008, Environmental microbiology.

[33]  C. McKay,et al.  Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence , 2008 .

[34]  R. Amundson,et al.  Non-biological fractionation of stable Ca isotopes in soils of the Atacama Desert, Chile , 2008 .

[35]  A. Ponce,et al.  Bacterial diversity in hyperarid Atacama Desert soils , 2007 .

[36]  A. Zent,et al.  Decomposition of aqueous organic compounds in the Atacama Desert and in Martian soils , 2007 .

[37]  L. Whyte,et al.  Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. , 2007, Journal of microbiological methods.

[38]  A. Skelley,et al.  Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument , 2007 .

[39]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[40]  Henry J Sun,et al.  Endolithic cyanobacteria in soil gypsum : Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts , 2007 .

[41]  Adrian Ponce,et al.  Microflora of extreme arid Atacama Desert soils , 2007 .

[42]  Christopher P. McKay,et al.  A threshold in soil formation at Earth's arid-hyperarid transition , 2006 .

[43]  J. Betancourt,et al.  Bacterial Community Structure in the Hyperarid Core of the Atacama Desert, Chile , 2006, Applied and Environmental Microbiology.

[44]  C. Conley,et al.  A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. , 2006, Astrobiology.

[45]  Rob Knight,et al.  UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context , 2006, BMC Bioinformatics.

[46]  Christopher P. McKay,et al.  Hypolithic Cyanobacteria, Dry Limit of Photosynthesis, and Microbial Ecology in the Hyperarid Atacama Desert , 2006, Microbial Ecology.

[47]  C. McKay,et al.  Life at the edge: endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert , 2006 .

[48]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[49]  Jonathan D. A. Clarke,et al.  Antiquity of aridity in the Chilean Atacama Desert , 2006 .

[50]  A. Mather,et al.  150 million years of climatic stability: evidence from the Atacama Desert, northern Chile , 2005, Journal of the Geological Society.

[51]  Tibor J. Dunai,et al.  Oligocene Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms , 2005 .

[52]  J. Betancourt,et al.  Microbial Life in the Atacama Desert , 2004, Science.

[53]  J. Bada,et al.  New Method for Estimating Bacterial Cell Abundances in Natural Samples by Use of Sublimation , 2004, Applied and Environmental Microbiology.

[54]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[55]  Adrian J. Hartley,et al.  The central Andean west‐slope rainshadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert , 2003 .

[56]  C. McKay,et al.  Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Niño of 1997-1998. , 2003, Astrobiology.

[57]  J. Quade,et al.  Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile , 2003 .

[58]  A. Jason,et al.  Isotopic evidence for the source of Ca and S in soil gypsum/ anhydrite and calcite in the Atacama Desert, Chile , 2002 .

[59]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[60]  C. McKay,et al.  Metabolic Activity of Permafrost Bacteria below the Freezing Point , 2000, Applied and Environmental Microbiology.

[61]  D. Karl,et al.  Microorganisms in the accreted ice of Lake Vostok, Antarctica. , 1999, Science.

[62]  G. Paudyal,et al.  Model for assessing impact of salinity on soil water availability and crop yield , 1999 .

[63]  J. Sørensen,et al.  Counting and Size Classification of Active Soil Bacteria by Fluorescence In Situ Hybridization with an rRNA Oligonucleotide Probe , 1999, Applied and Environmental Microbiology.

[64]  J. Tison,et al.  Preservation of Miocene glacier ice in East Antarctica , 1995, Nature.

[65]  D. Lane 16S/23S rRNA sequencing , 1991 .

[66]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[67]  E. Hajek,et al.  Bioclimatología de Chile , 1976 .

[68]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .