A Pb isotopic resolution to the Martian meteorite age paradox

[1]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[2]  B. Pavri,et al.  Chemical Evidence for an Aqueous History at Pahrump, Gale Crater, Mars, as Seen by the APXS , 2015 .

[3]  M. Whitehouse,et al.  Pb-isotopic evidence for an early, enriched crust on Mars , 2015 .

[4]  A. Muxworthy,et al.  Pressure–temperature evolution of primordial solar system solids during impact-induced compaction , 2014, Nature Communications.

[5]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[6]  M. Humayun,et al.  Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.

[7]  J. Darling,et al.  Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon , 2013, Nature.

[8]  C. Herd,et al.  Geochronology of the Martian meteorite Zagami revealed by U-Pb ion probe dating of accessory minerals , 2013 .

[9]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[10]  T. Niihara,et al.  U–Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites , 2012 .

[11]  J. Grimwood,et al.  Information for : A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars , 2010 .

[12]  F. Albarède,et al.  Martian meteorite chronology and the evolution of the interior of Mars , 2009 .

[13]  F. Albarède,et al.  The case for old basaltic shergottites , 2008 .

[14]  T. Harrison,et al.  High sensitivity mapping of Ti distributions in Hadean zircons , 2007 .

[15]  L. Borg,et al.  The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites , 2007 .

[16]  L. Borg,et al.  Uranium–lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201 , 2006 .

[17]  D. Bogard,et al.  Rb–Sr, Sm–Nd and Ar–Ar isotopic systematics of Martian dunite Chassigny , 2006 .

[18]  P. Decarli,et al.  Shock Effects in Meteorites , 2006 .

[19]  L. Borg,et al.  Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami , 2005 .

[20]  F. Albarède,et al.  The age of SNC meteorites and the antiquity of the Martian surface , 2005 .

[21]  M. Whitehouse,et al.  Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland , 2005 .

[22]  Jörg Fritz,et al.  Ejection of Martian meteorites , 2005 .

[23]  F. Houtermans Nachtrag zu der Mitteilung: Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans , 1946, Naturwissenschaften.

[24]  F. Houtermans Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans , 1946, Naturwissenschaften.

[25]  H. Wiesmann,et al.  The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics , 2003 .

[26]  M. Whitehouse,et al.  Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust , 2003 .

[27]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[28]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[29]  F. Guyot,et al.  Description of new shock-induced phases in the meteorites of Shergotty, Zagami, Nakhla and Chassigny , 2001 .

[30]  J. Woodhead,et al.  Pb‐Isotope Analyses of USGS Reference Materials , 2000 .

[31]  U. Krähenbühl,et al.  Noble gases and chemical composition of Shergotty mineral fractions, Chassigny, and Yamato 793605: The trapped argon‐40/argon‐36 ratio and ejection times of Martian meteorites , 1998 .

[32]  W. McDonough,et al.  The composition of peridotites and their minerals: a laser-ablation ICP–MS study , 1998 .

[33]  R. K. O’nions,et al.  High-resolution SIMS analysis of common lead , 1994 .

[34]  S. Hart,et al.  Mantle Plumes and Entrainment: Isotopic Evidence , 1992, Science.

[35]  S. M. Haines,et al.  The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-directional transport , 1988 .

[36]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[37]  G. Wasserburg,et al.  Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics , 1986 .

[38]  G. Wasserburg,et al.  The isotopic composition of silver and lead in two iron meteorites: Cape York and Grant , 1983 .

[39]  N. Nakamura,et al.  Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances , 1982 .

[40]  S. Hart,et al.  Isotope fractionation in secondary ion mass spectrometry , 1982 .

[41]  Paul H. Warren,et al.  The origin of KREEP , 1979 .

[42]  Susan Werner Kieffer,et al.  Shock processes in porous quartzite: Transmission electron microscope observations and theory , 1976 .

[43]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[44]  G. Wasserburg,et al.  U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks , 1972 .

[45]  M. S. Lancet,et al.  COSMIC‐RAY AND GAS‐RETENTION AGES OF THE CHASSIGNY METEORITE , 1971 .

[46]  C. Patterson,et al.  Concentrations of Common Lead in Some Atlantic and Mediterranean Waters and in Snow , 1963, Nature.

[47]  A. Holmes An Estimate of the Age of The Earth , 1946, Nature.