A Pb isotopic resolution to the Martian meteorite age paradox
暂无分享,去创建一个
J. Snape | P. Bland | G. Benedix | M. Whitehouse | A. Nemchin | J. Bellucci | R. Kielman | Alexander A. Nemchin | Ross Kielman
[1] A. McEwen,et al. Transient liquid water and water activity at Gale crater on Mars , 2015 .
[2] B. Pavri,et al. Chemical Evidence for an Aqueous History at Pahrump, Gale Crater, Mars, as Seen by the APXS , 2015 .
[3] M. Whitehouse,et al. Pb-isotopic evidence for an early, enriched crust on Mars , 2015 .
[4] A. Muxworthy,et al. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction , 2014, Nature Communications.
[5] R. Rudnick,et al. Composition of the Continental Crust , 2014 .
[6] M. Humayun,et al. Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.
[7] J. Darling,et al. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon , 2013, Nature.
[8] C. Herd,et al. Geochronology of the Martian meteorite Zagami revealed by U-Pb ion probe dating of accessory minerals , 2013 .
[9] A. Steele,et al. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.
[10] T. Niihara,et al. U–Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites , 2012 .
[11] J. Grimwood,et al. Information for : A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars , 2010 .
[12] F. Albarède,et al. Martian meteorite chronology and the evolution of the interior of Mars , 2009 .
[13] F. Albarède,et al. The case for old basaltic shergottites , 2008 .
[14] T. Harrison,et al. High sensitivity mapping of Ti distributions in Hadean zircons , 2007 .
[15] L. Borg,et al. The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites , 2007 .
[16] L. Borg,et al. Uranium–lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201 , 2006 .
[17] D. Bogard,et al. Rb–Sr, Sm–Nd and Ar–Ar isotopic systematics of Martian dunite Chassigny , 2006 .
[18] P. Decarli,et al. Shock Effects in Meteorites , 2006 .
[19] L. Borg,et al. Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami , 2005 .
[20] F. Albarède,et al. The age of SNC meteorites and the antiquity of the Martian surface , 2005 .
[21] M. Whitehouse,et al. Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland , 2005 .
[22] Jörg Fritz,et al. Ejection of Martian meteorites , 2005 .
[23] F. Houtermans. Nachtrag zu der Mitteilung: Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans , 1946, Naturwissenschaften.
[24] F. Houtermans. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans , 1946, Naturwissenschaften.
[25] H. Wiesmann,et al. The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics , 2003 .
[26] M. Whitehouse,et al. Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust , 2003 .
[27] K. Ludwig. User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .
[28] O. Eugster,et al. Ages and Geologic Histories of Martian Meteorites , 2001 .
[29] F. Guyot,et al. Description of new shock-induced phases in the meteorites of Shergotty, Zagami, Nakhla and Chassigny , 2001 .
[30] J. Woodhead,et al. Pb‐Isotope Analyses of USGS Reference Materials , 2000 .
[31] U. Krähenbühl,et al. Noble gases and chemical composition of Shergotty mineral fractions, Chassigny, and Yamato 793605: The trapped argon‐40/argon‐36 ratio and ejection times of Martian meteorites , 1998 .
[32] W. McDonough,et al. The composition of peridotites and their minerals: a laser-ablation ICP–MS study , 1998 .
[33] R. K. O’nions,et al. High-resolution SIMS analysis of common lead , 1994 .
[34] S. Hart,et al. Mantle Plumes and Entrainment: Isotopic Evidence , 1992, Science.
[35] S. M. Haines,et al. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-directional transport , 1988 .
[36] Kenneth L. Tanaka. The stratigraphy of Mars , 1986 .
[37] G. Wasserburg,et al. Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics , 1986 .
[38] G. Wasserburg,et al. The isotopic composition of silver and lead in two iron meteorites: Cape York and Grant , 1983 .
[39] N. Nakamura,et al. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances , 1982 .
[40] S. Hart,et al. Isotope fractionation in secondary ion mass spectrometry , 1982 .
[41] Paul H. Warren,et al. The origin of KREEP , 1979 .
[42] Susan Werner Kieffer,et al. Shock processes in porous quartzite: Transmission electron microscope observations and theory , 1976 .
[43] J. Kramers,et al. Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .
[44] G. Wasserburg,et al. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks , 1972 .
[45] M. S. Lancet,et al. COSMIC‐RAY AND GAS‐RETENTION AGES OF THE CHASSIGNY METEORITE , 1971 .
[46] C. Patterson,et al. Concentrations of Common Lead in Some Atlantic and Mediterranean Waters and in Snow , 1963, Nature.
[47] A. Holmes. An Estimate of the Age of The Earth , 1946, Nature.