In vivo calcium imaging of neural network function.

Spatiotemporal activity patterns in local neural networks are fundamental to brain function. Network activity can now be measured in vivo using two-photon imaging of cell populations that are labeled with fluorescent calcium indicators. In this review, we discuss basic aspects of in vivo calcium imaging and highlight recent developments that will help to uncover operating principles of neural circuits.

[1]  R. Tsien A non-disruptive technique for loading calcium buffers and indicators into cells , 1981, Nature.

[2]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[3]  Michael J. O'Donovan,et al.  Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes , 1993, Journal of Neuroscience Methods.

[4]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[5]  A. Gelperin,et al.  Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording , 1997, Journal of Neuroscience Methods.

[6]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[7]  F. Helmchen,et al.  Calcium influx during an action potential. , 1998, Methods in enzymology.

[8]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[9]  Benjamin S. Glick,et al.  Raising the Speed Limits for 4D Fluorescence Microscopy , 2000 .

[10]  B. Glick,et al.  Raising the speed limits for 4D fluorescence microscopy. , 2000, Traffic.

[11]  Wade G Regehr,et al.  Monitoring Presynaptic Calcium Dynamics in Projection Fibers by In Vivo Loading of a Novel Calcium Indicator , 2000, Neuron.

[12]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[13]  I. Parker,et al.  Construction of a two-photon microscope for video-rate Ca(2+) imaging. , 2001, Cell calcium.

[14]  L. Cohen,et al.  Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb , 2001, Neuron.

[15]  Jack Waters,et al.  Ca2+ imaging in the mammalian brain in vivo. , 2002, European journal of pharmacology.

[16]  A. Konnerth,et al.  "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging , 2003, Pflügers Archiv.

[17]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[18]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[19]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[21]  R. Wong,et al.  Calcium imaging and multielectrode recordings of global patterns of activity in the developing nervous system , 1998, The Histochemical Journal.

[22]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[23]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[24]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[25]  G. Buzsáki,et al.  Calcium Dynamics of Cortical Astrocytic Networks In Vivo , 2004, PLoS biology.

[26]  T. Takano,et al.  An astrocytic basis of epilepsy , 2005, Nature Medicine.

[27]  I. Kevrekidis,et al.  Optical imaging and control of genetically designated neurons in functioning circuits. , 2005, Annual review of neuroscience.

[28]  O. Garaschuk,et al.  Cortical calcium waves in resting newborn mice , 2005, Nature Neuroscience.

[29]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[30]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Michael J. O'Donovan,et al.  Calcium imaging of network function in the developing spinal cord. , 2005, Cell calcium.

[32]  C. Niell,et al.  Functional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum , 2005, Neuron.

[33]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[34]  Shigeo Watanabe,et al.  Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons , 2005, Cellular and Molecular Neurobiology.

[35]  S. Wang,et al.  In vivo calcium imaging of circuit activity in cerebellar cortex. , 2005, Journal of neurophysiology.

[36]  P. Saggau,et al.  Fast three-dimensional laser scanning scheme using acousto-optic deflectors. , 2005, Journal of biomedical optics.

[37]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[38]  P. Saggau,et al.  Random-access Multiphoton (ramp) Microscopy Fast Functional Imaging of Single Neurons Using , 2005 .

[39]  O. Garaschuk,et al.  Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo , 2006, Nature Protocols.

[40]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[41]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[42]  J. Léger,et al.  Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors , 2006, Journal of Neuroscience Methods.

[43]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[44]  Takahiro Takano,et al.  Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. , 2006, Advanced drug delivery reviews.

[45]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[46]  O. Garaschuk,et al.  Optical monitoring of brain function in vivo: from neurons to networks , 2006, Pflügers Archiv.

[47]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[48]  Javier Díez-García,et al.  Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors , 2006, Trends in Neurosciences.

[49]  F. Engert,et al.  Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo , 2006, Journal of Neuroscience Methods.

[50]  Rainer W Friedrich,et al.  Topological Reorganization of Odor Representations in the Olfactory Bulb , 2007, PLoS biology.

[51]  Tsai-Wen Chen,et al.  Cell type‐specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb , 2007, The Journal of physiology.

[52]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[53]  Oliver Griesbeck,et al.  Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor , 2007, Nature Methods.

[54]  Pál Maák,et al.  Random access three-dimensional two-photon microscopy. , 2007, Applied optics.

[55]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[56]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[57]  Shin Nagayama,et al.  In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits , 2007, Neuron.

[58]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[59]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[60]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[61]  R. Reid,et al.  Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity , 2007, Neuron.

[62]  Thomas Knöpfel,et al.  In vivo calcium imaging from genetically specified target cells in mouse cerebellum , 2007, NeuroImage.

[63]  Oliver Griesbeck,et al.  Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. , 2007, Cell calcium.

[64]  M. Kotlikoff,et al.  Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology , 2007, The Journal of physiology.

[65]  Takahiro Takano,et al.  Two‐Photon Imaging of Astrocytic Ca2+ Signaling and the Microvasculature in Experimental Mice Models of Alzheimer's Disease , 2007, Annals of the New York Academy of Sciences.

[66]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[67]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[68]  W. Gabel 3D laser-scanning techniques for two-photon calcium imaging of neural network dynamics in vivo , 2008 .