A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency

We propose a nonlinear multigrid approach for imaging the electrical conductivity and permittivity of a body Ω, given partial, usually noisy knowledge of the Neumann-to-Dirichlet map at the boundary. The algorithm is a nested iteration, where the image is constructed on a sequence of grids in Ω, starting from the coarsest grid and advancing towards the finest one. We show various numerical examples that demonstrate the effectiveness and robustness of the algorithm and prove local convergence.

[1]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[4]  Andreas Rieder,et al.  On the regularization of nonlinear ill-posed problems via inexact Newton iterations , 1999 .

[5]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  Jun Zhang,et al.  Acceleration and stabilization properties of minimal residual smoothing technique in multigrid , 1999, Appl. Math. Comput..

[8]  A velocity inversion problem involving an unknown source , 1990 .

[9]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[10]  M. Cheney,et al.  Detection and imaging of electric conductivity and permittivity at low frequency , 1991, IEEE Transactions on Biomedical Engineering.

[11]  David Isaacson,et al.  Layer stripping: a direct numerical method for impedance imaging , 1991 .

[12]  John Sylvester,et al.  A convergent layer stripping algorithm for the radially symmetric impedence tomography problem , 1992 .

[13]  Kohn,et al.  Variational constraints for electrical-impedance tomography. , 1990, Physical review letters.

[14]  J. G. Wade,et al.  Multigrid solution of a linearized, regularized least-squares problem in electrical impedance tomography , 1993 .

[15]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[16]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[17]  Fadil Santosa,et al.  Stability and resolution analysis of a linearized problem in electrical impedance tomography , 1991 .

[18]  G. Folland Introduction to Partial Differential Equations , 1976 .

[19]  F. Santosa,et al.  An effective nonlinear boundary condition for a corroding surface. Identification of the damage based on steady state electric data , 1998 .

[20]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[21]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[22]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[23]  Jun Zhang Multi-level minimal residual smoothing: a family of general purpose mutigrid acceleration techniques , 1998 .

[24]  M. Neuman,et al.  Impedance computed tomography algorithm and system. , 1985, Applied optics.

[25]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[26]  Edward B Curtis,et al.  Determining the resistors in a network , 1990 .

[27]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[28]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[29]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[30]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[31]  Fadil Santosa,et al.  Resolution and Stability Analysis of an Inverse Problem in Electrical Impedance Tomography: Dependence on the Input Current Patterns , 1994, SIAM J. Appl. Math..

[32]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[33]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[34]  V. Isakov Appendix -- Function Spaces , 2017 .

[35]  David C. Dobson,et al.  Convergence of a reconstruction method for the inverse conductivity problem , 1992 .

[36]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[37]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[38]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[39]  Douglas LaBrecque,et al.  Monitoring an underground steam injection process using electrical resistance tomography , 1993 .

[40]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[41]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[42]  Robert V. Kohn,et al.  Numerical implementation of a variational method for electrical impedance tomography , 1990 .

[43]  A. Binley,et al.  Detection of leaks in underground storage tanks using electrical resistance methods. , 1996 .