Atomic-scale mode separation for mixed-mode intergranular fracture in polycrystalline metals

Abstract In intergranular fractures, cracks tend to propagate along grain boundaries (GBs) even under mixed-mode loadings. To quantitatively characterize the mixed-mode intergranular fractures, the stress intensity factors (SIFs) of modes I and II at the crack tip need to be found individually. In this study, an atomic-scale mode separation method is developed to determine individual SIFs from the molecular dynamics (MD) simulation of the mixed-mode intergranular fracture in crystalline metals, for which the atomic-scale J-based mutual integral and asymptotic singular field (i.e., K-field) near a semi-infinite interfacial crack in an anisotropic bimaterial as an auxiliary field are used. Additionally, atomic-level J and M integrals are also performed to determine the energy release rate and the position of a crack tip under the applied mixed-mode loadings, respectively. As a model problem, the mixed-mode fracture along GBs of nickel is investigated to demonstrate that the present atomic-scale mode separation method is useful to examine mixed-mode intergranular fracture behaviors of polycrystalline metals at the atomic scale.

[1]  Ted Belytschko,et al.  Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets , 2007 .

[2]  S. Atluri,et al.  Stress intensity factors as the fracture parameters for delamination crack growth in composite laminates , 1998 .

[3]  K. Kim,et al.  Nanoscale planar field projections of atomic decohesion and slip in crystalline solids. Part I. A crack-tip cohesive zone , 2007 .

[4]  Markus J. Buehler,et al.  Molecular mechanics of polycrystalline graphene with enhanced fracture toughness , 2015 .

[5]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[6]  Takahiro Shimada,et al.  Breakdown of Continuum Fracture Mechanics at the Nanoscale , 2015, Scientific Reports.

[7]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[8]  Y. G. Xu,et al.  Stepwise-equilibrium and Adaptive Molecular Dynamics Simulation for Fracture Toughness of Single Crystals , 2004 .

[9]  Seung Tae Choi,et al.  Atomic-scale mutual integrals for mixed-mode fracture: Abnormal fracture toughness of grain boundaries in graphene , 2018 .

[10]  James R. Rice,et al.  Elastic Fracture Mechanics Concepts for Interfacial Cracks , 1988 .

[11]  Zhigang Suo,et al.  Singularities, interfaces and cracks in dissimilar anisotropic media , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  J. Qu,et al.  Cracks on bimaterial and bicrystal interfaces , 1989 .

[13]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[14]  J. D. Eshelby,et al.  Anisotropic elasticity with applications to dislocation theory , 1953 .

[15]  S. Atluri,et al.  Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media , 1996 .

[16]  Seung Tae Choi,et al.  On the unified approach to anisotropic and isotropic elasticity for singularity, interface and crack in dissimilar media , 2003 .

[17]  M. Dewapriya,et al.  Atomistic and continuum modelling of temperature-dependent fracture of graphene , 2014, International Journal of Fracture.

[18]  J. Rice,et al.  Conservation Laws and Energy-Release Rates , 1973 .

[19]  D. Farkas Fracture mechanisms of symmetrical tilt grain boundaries , 2000 .

[20]  R. Shield,et al.  Conservation laws in elasticity of the J-integral type , 1977 .

[21]  F. Yuan,et al.  Atomistic simulations of J-integral in 2D graphene nanosystems. , 2005, Journal of nanoscience and nanotechnology.

[22]  L. Sluys,et al.  On the modelling of mixed-mode discrete fracture: Part I – Damage models , 2017 .

[23]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[24]  V. Vítek,et al.  On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  John E. Dolbow,et al.  Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks , 1998 .

[26]  Hyun Gyu Kim,et al.  Mode decomposition of three-dimensional mixed-mode cracks via two-state integrals , 2001 .

[27]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[28]  Qiang Liu,et al.  Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation , 2014 .

[29]  T Belytschko,et al.  An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  T. Kitamura,et al.  Fracture Mechanics at Atomic Scales , 2015 .

[31]  Timon Rabczuk,et al.  Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites , 2016 .

[32]  Yong-Joo Cho,et al.  Application of a conservation integral to an interface crack interacting with singularities , 1994 .

[33]  James K. Knowles,et al.  On a class of conservation laws in linearized and finite elastostatics , 1972 .

[34]  R. Jones,et al.  The application of an atomistic J-integral to a ductile crack , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  E. Tadmor,et al.  Material fields in atomistics as pull-backs of spatial distributions , 2016 .

[36]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[37]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[38]  Zi-Xing Lu,et al.  Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation , 2014 .

[39]  James K. Knowles,et al.  An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack , 1973 .

[40]  Youn Young Earmme,et al.  Application of conservation integrals to interfacial crack problems , 1986 .

[41]  Peifeng Li,et al.  Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina , 2017 .

[42]  M. Dewapriya,et al.  Molecular Dynamics Simulations and Continuum Modeling of Temperature and Strain Rate Dependent Fracture Strength of Graphene With Vacancy Defects , 2014 .

[43]  J. Kysar Directional dependence of fracture in copper/sapphire bicrystal , 2000 .

[44]  J. Qu,et al.  Interfacial dislocation and its applications to interface cracks in anisotropic bimaterials , 1991 .

[45]  M. Baghani,et al.  Mixed-mode fracture of a superelastic NiTi alloy: Experimental and numerical investigations , 2017 .

[46]  F. Berto,et al.  Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion , 2017 .

[47]  R. Jones,et al.  The construction and application of an atomistic J-integral via Hardy estimates of continuum fields , 2010 .

[48]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[49]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[50]  Linggang Zhu,et al.  Segregation effects of Y, Ti, Cr and Si on the intergranular fracture of niobium , 2017 .

[51]  R. Wanhill,et al.  Low-energy intergranular fracture in Al–Li alloys , 2012 .

[52]  T. Kitamura,et al.  Fracture Behavior of Nanoscale Notched Silicon Beams Investigated by the Theory of Critical Distances , 2018 .

[53]  F. Berto,et al.  Mixed mode fracture , 2017 .

[54]  Jian-Sheng Wang,et al.  FRACTURE BEHAVIOR OF EMBRITTLED F.C.C. METAL BICRYSTALS , 1991 .

[55]  Nan Li,et al.  Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature , 2016 .

[56]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[57]  Gi Hun Lee,et al.  Mixed-mode fracture toughness evaluation of a copper single crystal using atomistic simulations , 2017 .

[58]  Toshio Nakamura,et al.  Three-Dimensional Stress Fields of Elastic Interface Cracks , 1991 .