Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate

Epitaxially grown Ge layers on Si substrate are shown to reveal an enhanced absorption of near-infrared light, which is effective for the photodiode application in Si-based photonics. Ge layers as thick as 1μm were grown on Si substrate by ultrahigh-vacuum chemical-vapor deposition with a low-temperature buffer layer technique. X-ray-diffraction measurements showed that the Ge layer possesses a tensile strain as large as 0.2%, which is generated during the cooling from the high growth temperature due to the thermal-expansion mismatch between Ge and Si. Photoreflectance measurements showed that the tensile strain reduces the direct band-gap energy to 0.77 eV (c.f. 0.80 eV for unstrained Ge), as expected from the theory. Reflecting the band-gap narrowing, photodiodes fabricated using the Ge layer revealed an enhanced absorption of near-infrared light with the photon energy below 0.80 eV, i.e., with the wavelength above 1.55μm. This property is effective to apply the photodiodes to the L band (1.56–1.62μm) i...

[1]  Gaetano Assanto,et al.  High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration , 2001 .

[2]  H. P. Singh,et al.  Determination of thermal expansion of germanium, rhodium and iridium by X‐rays , 1968 .

[3]  E. Kasper Strained Layer Superlattices , 1987 .

[4]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[5]  M. Gershenzon,et al.  Plastic deformation and fracture resulting from stresses caused by differential thermal contraction in GaP/Si heterostructures , 1980 .

[6]  Gianlorenzo Masini,et al.  High performance germanium-on-silicon detectors for optical communications , 2002 .

[7]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[8]  Hamakawa,et al.  Photoreflectance study on residual strain in heteroepitaxial gallium arsenide on silicon. , 1990, Physical review. B, Condensed matter.

[9]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[10]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[11]  E. P. EerNisse,et al.  Stress in thermal SiO2 during growth , 1979 .

[12]  Hermann A. Haus,et al.  Passive Components for Dense Optical Integration , 2001 .

[13]  Lionel C. Kimerling,et al.  Losses in polycrystalline silicon waveguides , 1996 .

[14]  David E. Aspnes,et al.  Electro-Absorption Effects at the Band Edges of Silicon and Germanium , 1966 .

[15]  G. Masini,et al.  Germanium on silicon pin photodiodes for the near infrared , 2000 .

[16]  Lionel C. Kimerling,et al.  Low‐loss polycrystalline silicon waveguides for silicon photonics , 1996 .

[17]  Yasuhiko Ishikawa,et al.  Silicidation-induced band gap shrinkage in Ge epitaxial films on Si , 2004 .

[18]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[19]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[20]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[21]  E. P. EerNisse,et al.  Viscous flow of thermal SiO2 , 1977 .

[22]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[23]  Gregory H. Olsen,et al.  Calculated stresses in multilayered heteroepitaxial structures , 1977 .

[24]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[25]  Shen,et al.  Generalized Franz-Keldysh theory of electromodulation. , 1990, Physical review. B, Condensed matter.

[26]  H. Morkoç,et al.  Anisotropy of thermal expansion of GaAs on Si(001) , 1988 .

[27]  W. Kopp,et al.  Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors , 1986, IEEE Transactions on Electron Devices.

[28]  Yasumasa Okada,et al.  Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K , 1984 .

[29]  T. Pearsall Strained-Layer superlattices : materials science and technology , 1991 .

[30]  Hongen Shen,et al.  Franz–Keldysh oscillations in modulation spectroscopy , 1995 .

[31]  C. K. Maiti,et al.  Strained silicon heterostructures : materials and devices , 2001 .

[32]  Michael S. Shur,et al.  Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb , 1996 .

[33]  Paul Handler,et al.  Franz-Keldysh Effect in the Space-Charge Region of a Germanium p − n Junction , 1965 .

[34]  Kazumi Wada,et al.  High-quality Ge epilayers on Si with low threading-dislocation densities , 1999 .

[35]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[36]  Yasuhiko Ishikawa,et al.  Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications , 2004 .

[37]  F. Pollak Chapter 2 Effects of Homogeneous Strain on the Electronic and Vibrational Levels in Semiconductors , 1990 .

[38]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[39]  F. Pollak Study of semiconductor surfaces and interfaces using electromodulation , 2001 .

[40]  Subramanian S. Iyer,et al.  Relaxation of SiGe thin films grown on Si/SiO2 substrates , 1994 .

[41]  T. Pearsall Strained-Layer superlattices : physics , 1990 .

[42]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .