Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy

[1]  Shuping Peng,et al.  Bone biomaterials and interactions with stem cells , 2017, Bone Research.

[2]  C. Prakash,et al.  Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity , 2017 .

[3]  B. Hou,et al.  The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy , 2017 .

[4]  D. Raabe,et al.  A rare-earth free magnesium alloy with improved intrinsic ductility , 2017, Scientific Reports.

[5]  M. Ehrensberger,et al.  Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications , 2017, Journal of functional biomaterials.

[6]  Zhigang Xu,et al.  Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system , 2017, PloS one.

[7]  S. Ou,et al.  Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys , 2017 .

[8]  Peter J. Murphy,et al.  Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness , 2017 .

[9]  Xian Jian,et al.  Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation , 2017 .

[10]  S. Stanzl-Tschegg,et al.  The potential of isotopically enriched magnesium to study bone implant degradation in vivo. , 2017, Acta biomaterialia.

[11]  Jin-young Park,et al.  Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys , 2017 .

[12]  B. S. Pabla,et al.  Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy , 2017 .

[13]  Qiang Xu,et al.  Microstructure of Hydroxyapatite/Collagen Coating on AZ31 Magnesium Alloy by a Solution Treatment , 2017 .

[14]  M. Basista,et al.  Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials , 2017, Journal of biomaterials applications.

[15]  W. Sales,et al.  Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications , 2016 .

[16]  Sanjeev Puri,et al.  Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β-Ti Implant for Orthopedics Application , 2016, J. Comput. Inf. Sci. Eng..

[17]  James F Curtin,et al.  Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. , 2016, Materials science & engineering. C, Materials for biological applications.

[18]  H. Bail,et al.  Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation , 2016, Case reports in orthopedics.

[19]  B. S. Pabla,et al.  Effect of Surface Nano-Porosities Fabricated by Powder Mixed Electric Discharge Machining on Bone-Implant Interface: An Experimental and Finite Element Study , 2016 .

[20]  S. Ou,et al.  Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment , 2016 .

[21]  Chander Prakash,et al.  Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology , 2016 .

[22]  Bülent Ekmekci,et al.  Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid , 2016 .

[23]  B. S. Pabla,et al.  Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: A review , 2016 .

[24]  S. Natarajan Biomimetic, Bioresponsive, and Bioactive Materials edited by Matteo Santin and Gary J. Phillips , 2016 .

[25]  S. R. Pedapati,et al.  Electrical Discharge Machining on Biodegradable AZ31 Magnesium Alloy Using Taguchi Method , 2016 .

[26]  Peter J. Murphy,et al.  Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants , 2015, Science and technology of advanced materials.

[27]  B. S. Pabla,et al.  Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining , 2015, Journal of Materials Engineering and Performance.

[28]  Ming-Hong Lin,et al.  Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent , 2014 .

[29]  Tzu-Sen Yang,et al.  Effect of Electrical Discharging on Formation of Nanoporous Biocompatible Layer on Ti-6Al-4V Alloys , 2013, Implant dentistry.

[30]  Tzu-Sen Yang,et al.  Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response , 2013 .

[31]  F. Klocke,et al.  Influence of Electro Discharge Machining of Biodegradable Magnesium on the Biocompatibility , 2013 .

[32]  Apiwat Muttamara,et al.  Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension , 2012 .

[33]  Gao Yang,et al.  Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications , 2011 .

[34]  F. Klocke,et al.  EDM Machining Capabilities of Magnesium (Mg) Alloy WE43 for Medical Applications , 2011 .

[35]  K. Ou,et al.  Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium , 2010 .

[36]  P. V. Rao,et al.  The effect of process parameters on machining of magnesium nano alumina composites through EDM , 2010 .

[37]  K. Ou,et al.  Effect of electro-discharging on formation of biocompatible layer on implant surface , 2008 .