On the Fingerprinting Capacity Under the Marking Assumption

We study the maximum attainable rate or capacity of fingerprinting codes under the marking assumption. It is proved that capacity for fingerprinting against coalitions of size two and three over the binary alphabet satisfies 0.25 les C2,2 les 0.322 and 0.083 les C3,2 les 0.199 respectively. For coalitions of an arbitrary fixed size, we derive a closed-form upper bound on fingerprinting capacity in the binary case. Finally, for general alphabets, we establish upper bounds on the fingerprinting capacity involving only single-letter mutual information quantities.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. Ahlswede An elementary proof of the strong converse theorem for the multiple-access channel , 1982 .

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  Joseph A. O'Sullivan,et al.  Information-theoretic analysis of information hiding , 2003, IEEE Trans. Inf. Theory.

[5]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[6]  Gérard D. Cohen,et al.  A Hypergraph Approach to the Identifying Parent Property: The Case of Multiple Parents , 2001, SIAM J. Discret. Math..

[7]  Noga Alon,et al.  New Bounds on Parent-Identifying Codes: The Case of Multiple Parents , 2004, Combinatorics, Probability and Computing.

[8]  Udo Augustin,et al.  GedÄchtnisfreie KanÄle für diskrete Zeit , 1966 .

[9]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[10]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[11]  Rudolf Ahlswede,et al.  Codes with the Identifiable Parent Property and the Multiple-Access Channel , 2005, GTIT-C.

[12]  Alexander Barg,et al.  Random Binary Fingerprinting Codes for Arbitrarily Sized Coalitions , 2006, 2006 IEEE International Symposium on Information Theory.

[13]  Alexander Barg,et al.  Digital fingerprinting codes: problem statements, constructions, identification of traitors , 2003, IEEE Trans. Inf. Theory.

[14]  Alexander Barg,et al.  A class of I.P.P. codes with efficient identification , 2004, J. Complex..

[15]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[16]  Neri Merhav,et al.  On the capacity game of private fingerprinting systems under collusion attacks , 2003, IEEE Transactions on Information Theory.

[17]  G. R. Blakley,et al.  Random coding technique for digital fingerprinting codes: fighting two pirates revisited , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..