Synthesis of Havriliak-Negami functions for time-domain system identification

Abstract Fractional differentiation models have proven their usefulness in representing high dimensional systems with only few parameters. Generally, two elementary fractional functions are used in time-domain identification: Cole-Cole and Davidson-Cole functions. A third elementary function, called Havriliak-Negami, generalizes both previous ones and is particularly dedicated to dielectric systems. The use of this function is however not very popular in time-domain identification because it has no simple analytical impulse response. The only synthesis method of Havriliak-Negami elementary functions proposed in the literature is based on diffusive representation which sets restrictive conditions on fractional orders. A new synthesis method, with no such restrictions, is developed in this paper. For that purpose Havriliak-Negami function is first split into a Davidson-Cole function and a complementary one. Both functions are then synthesized in a limited frequency band using poles and zeros recursive distribution developed by Oustaloup (1995). As an example, this Havriliak-Negami function is used for a thermal system modeling.

[1]  S. Havriliak,et al.  A complex plane analysis of α‐dispersions in some polymer systems , 2007 .

[2]  M. B. Subrahmanyam,et al.  An extension of the simplex method to constrained nonlinear optimization , 1989 .

[3]  Daniel John Woods,et al.  An interactive approach for solving multi-objective optimization problems (interactive computer, nelder-mead simplex algorithm, graphics) , 1985 .

[4]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[5]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[6]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[7]  J. Sabatier,et al.  TUTORIAL ON SYSTEM IDENTIFICATION USING FRACTIONAL DIFFERENTIATION MODELS , 2006 .

[8]  M. Aoun,et al.  Systèmes linéaires non entiers et identification par bases orthogonales non entières , 2005 .

[9]  Lionel Laudebat Modélisation et identification sous représentation diffusive de comportements dynamiques non rationnels en génie électrique , 2003 .

[10]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[11]  Jun Lin,et al.  Modélisation et identification des systèmes d'ordre non entier , 2001 .

[12]  A. Oustaloup La dérivation non entière , 1995 .

[13]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[14]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[15]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .