The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti-de Sitter geometry

Celebrated work of Alexandrov and Pogorelov determines exactly which metrics on the sphere are induced on the boundary of a compact convex subset of hyperbolic three-space. As a step toward a generalization for unbounded convex subsets, we consider convex regions of hyperbolic three-space bounded by two properly embedded disks which meet at infinity along a Jordan curve in the ideal boundary. In this setting, it is natural to augment the notion of induced metric on the boundary of the convex set to include a gluing map at infinity which records how the asymptotic geometry of the two surfaces compares near points of the limiting Jordan curve. Restricting further to the case in which the induced metrics on the two bounding surfaces have constant curvature $K \in [-1,0)$ and the Jordan curve at infinity is a quasicircle, the gluing map is naturally a quasisymmetric homeomorphism of the circle. The main result is that for each value of $K$, every quasisymmetric map is achieved as the gluing map at infinity along some quasicircle. We also prove analogous results in the setting of three-dimensional anti de Sitter geometry. Our results may be viewed as universal versions of the conjectures of Thurston and Mess about prescribing the induced metric on the boundary of the convex core of quasifuchsian hyperbolic manifolds and globally hyperbolic anti de Sitter spacetimes.

[1]  Jean-Marc Schlenker,et al.  Quasicircles and width of Jordan curves in CP1 , 2020, Bulletin of the London Mathematical Society.

[2]  Andrea Tamburelli Prescribing Metrics on the Boundary of Anti-de Sitter 3-Manifolds , 2016 .

[3]  Franccois Fillastre,et al.  Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions , 2016, Eighteen Essays in Non-Euclidean Geometry.

[4]  F. Bonsante,et al.  Area‐preserving diffeomorphisms of the hyperbolic plane and K ‐surfaces in anti‐de Sitter space , 2016, 1610.05701.

[5]  Andrea Tamburelli Prescribing metrics on the boundary of AdS 3-manifolds , 2016, 1604.05186.

[6]  F. Bonsante,et al.  Spacelike convex surfaces with prescribed curvature in (2+1)-Minkowski space , 2015, 1505.06748.

[7]  Mehdi Belraouti Asymptotic behavior of Cauchy hypersurfaces in constant curvature space–times , 2015, 1503.06343.

[8]  Jean-Marc Schlenker,et al.  Polyhedra inscribed in a quadric , 2014, Inventiones mathematicae.

[9]  Boubacar Diallo Prescribing metrics on the boundary of convex cores of globally hyperbolic maximal compact AdS 3-manifolds , 2013, 1303.7406.

[10]  Hideki Miyachi,et al.  Uniform weak* topology and earthquakes in the hyperbolic plane , 2012 .

[11]  Mehdi Belraouti Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques , 2012, 1201.3716.

[12]  R. Canary,et al.  The Thurston Metric on Hyperbolic Domains and Boundaries of Convex Hulls , 2010, 1002.1929.

[13]  Jean-Marc Schlenker,et al.  Maximal surfaces and the universal Teichmüller space , 2009, 0911.4124.

[14]  S. Yau,et al.  Geometry, Analysis and Topology of Discrete Groups , 2008 .

[15]  A. Zeghib,et al.  Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space , 2008, 0804.1053.

[16]  A. Zeghib,et al.  Constant Mean Curvature Foliations of Globally Hyperbolic Spacetimes Locally Modelled on AdS3 , 2007 .

[17]  G. Mess Lorentz spacetimes of constant curvature , 2007, 0706.1570.

[18]  Vladimir Markovic,et al.  Quasiconformal Maps and Teichmüller Theory , 2006 .

[19]  D. Epstein,et al.  Fundamentals of Hyperbolic Manifolds: CONVEX HULLS IN HYPERBOLIC SPACE, A THEOREM OF SULLIVAN, AND MEASURED PLEATED SURFACES , 2006 .

[20]  D. Minda,et al.  Estimates for Conformal Metric Ratios , 2006 .

[21]  Jean-Marc Schlenker,et al.  Minimal surfaces and particles in 3-manifolds , 2005, math/0511441.

[22]  R. Benedetti,et al.  Canonical Wick Rotations in 3-Dimensional Gravity , 2005, math/0508485.

[23]  D. Šarić Real and complex earthquakes , 2005 .

[24]  Jean-Marc Schlenker Hyperbolic manifolds with convex boundary , 2002, math/0205305.

[25]  Jean-Marc Schlenker Hypersurfaces in Hn and the space of its horospheres , 2001, math/0101248.

[26]  Igor Rivin Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space , 2000, math/0005234.

[27]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[28]  C. Hodgson,et al.  A characterization of compact convex polyhedra in hyperbolic 3-space , 1993 .

[29]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[30]  F. Labourie Surfaces Convexes Dans L'Espace Hyperbolique Et CP1Structures , 1992 .

[31]  M. Troyanov The Schwarz lemma for nonpositively curved Riemmanian surfaces , 1991 .

[32]  M. Penna On a Theorem of Sullivan , 1978, Canadian Mathematical Bulletin.

[33]  Shing-Tung Yau,et al.  A GENERAL SCHWARZ LEMMA FOR KAHLER MANIFOLDS. , 1978 .

[34]  D. Chand,et al.  On Convex Polyhedra , 1970 .

[35]  F. Bonsante Constant curvature $(2+1)$-spacetimes and projective structures , 2004 .

[36]  J.-M. Schlenker Métriques sur les polyèdres hyperboliques convexes , 1998 .

[37]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[38]  J.-M. Schlenker Surfaces convexes dans des espaces lorentziens à courbure constante , 1996 .

[39]  J. Spruck,et al.  On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space , 1994 .

[40]  F. Labourie Métriques prescrites sur le bord des variétés hyperboliques de dimension 3 , 1992 .

[41]  F. Labourie Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques , 1991 .

[42]  F. Labourie Immersions isométriques elliptiques et courbes pseudo-holomorphes , 1989 .

[43]  D. Sullivan Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension $3$ fibrées sur $S^1$ , 1981 .

[44]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[45]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[46]  L. Bers SIMULTANEOUS UNIFORMIZATION , 2022 .

[47]  Y. Benoist A survey on divisible convex sets , 2022 .