Mean Dynamical Entropy of Quantum Maps on the Sphere Diverges in the Semiclassical Limit

We analyze quantum dynamical entropy based on the notion of coherent states. The mean value of this quantity for quantum maps on the sphere is computed as an average over the uniform measure on the space of unitary matrices of size $N$. Mean dynamical entropy is positive for $N\ensuremath{\ge}3$, which supplies a direct link between random matrices of the circular unitary ensemble and the chaotic dynamics of the corresponding classical maps. Mean entropy tends logarithmically to infinity in the semiclassical limit $N\ensuremath{\rightarrow}\ensuremath{\infty}$ and this indicates the ubiquity of chaos in classical mechanics.

[1]  A. Voros,et al.  Chaos-revealing multiplicative representation of quantum eigenstates , 1990 .

[2]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[3]  Silviu Guiaşu,et al.  Information theory with applications , 1977 .

[4]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[5]  G. Roepstorff,et al.  Quantum dynamical entropy , 1995 .

[6]  Mark Fannes,et al.  Defining quantum dynamical entropy , 1994 .

[7]  Wojciech Słomczyński,et al.  Coherent states measurement entropy , 1996, chao-dyn/9604010.

[8]  Halliwell Quantum-mechanical histories and the uncertainty principle: Information-theoretic inequalities. , 1993, Physical review. D, Particles and fields.

[9]  K. Jones Entropy of random quantum states , 1990 .

[10]  C. T. Lee Wehrl's entropy of spin states and Lieb's conjecture , 1988 .

[11]  Structural Invariance: A Link Between Chaos and Random Matrices , 1996, chao-dyn/9602004.

[12]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[13]  K R W Jones Quantum limits to information about states for finite dimensional Hilbert space , 1991 .

[14]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[15]  M. Kus,et al.  Universality of eigenvector statistics of kicked tops of different symmetries , 1988 .

[16]  F. E. SchroeckJr. On the nonoccurrence of two paradoxes in the measurement scheme of stochastic quantum mechanics , 1985 .

[17]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[18]  D. Gitman,et al.  Coherent states of SU(N) groups , 1992 .

[19]  A. Wehrl On the relation between classical and quantum-mechanical entropy , 1979 .

[20]  H J Korsch,et al.  Intrinsic ordering of quasienergy states for mixed regular/chaotic quantum systems: zeros of the Husimi distribution , 1997 .

[21]  A. Connes,et al.  Dynamical entropy ofC* algebras and von Neumann algebras , 1987 .

[22]  F. Haake Quantum signatures of chaos , 1991 .

[23]  Karol Życzkowski,et al.  Quantum chaos: An entropy approach , 1994 .