Frames over finite fields: Equiangular lines in orthogonal geometry

We investigate equiangular lines in finite orthogonal geometries, focusing specifically on equiangular tight frames (ETFs). In parallel with the known correspondence between real ETFs and strongly regular graphs (SRGs) that satisfy certain parameter constraints, we prove that ETFs in finite orthogonal geometries are closely aligned with a modular generalization of SRGs. The constraints in our finite field setting are weaker, and all but 18 known SRG parameters on v ≤ 1300 vertices satisfy at least one of them. Applying our results to triangular graphs, we deduce that Gerzon’s bound is attained in finite orthogonal geometries of infinitely many dimensions. We also demonstrate connections with real ETFs, and derive necessary conditions for ETFs in finite orthogonal geometries. As an application, we show that Gerzon’s bound cannot be attained in a finite orthogonal geometry of dimension 5.

[1]  Alexander Barg,et al.  Finite two-distance tight frames , 2014, 1402.3521.

[2]  Tilen Marc,et al.  There is no (95, 40, 12, 20) strongly regular graph , 2016, Journal of Combinatorial Designs.

[3]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[4]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[5]  Tilen Marc,et al.  There is no (75,32,10,16) strongly regular graph , 2015, Linear Algebra and its Applications.

[6]  Shayne Waldron,et al.  On the construction of equiangular frames from graphs , 2009 .

[7]  D. E. Taylor Regular 2‐Graphs , 1977 .

[8]  K. Stohr The Gap , 2019, Minding the Gap.

[9]  Blake C. Stacey Equiangular Lines , 2021, A First Course in the Sporadic SICs.

[10]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[11]  Dustin G. Mixon,et al.  Tremain equiangular tight frames , 2016, J. Comb. Theory, Ser. A.

[12]  Dustin G. Mixon,et al.  Equiangular tight frames with centroidal symmetry , 2015, 1509.04059.

[13]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[14]  Dustin G. Mixon,et al.  The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.

[15]  L. Grove,et al.  Classical Groups and Geometric Algebra , 2001 .

[16]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[17]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[18]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[19]  A. A. Makhnev On the Nonexistence of Strongly Regular Graphs with Parameters (486, 165, 36, 66) , 2002 .

[20]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[21]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[22]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[23]  Dustin G. Mixon,et al.  Fingerprinting With Equiangular Tight Frames , 2011, IEEE Transactions on Information Theory.

[24]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[25]  Arnold Neumaier,et al.  New inequalities for the parameters of an association scheme , 1981 .

[26]  Joseph W. Iverson,et al.  Frames over finite fields: Basic theory and equiangular lines in unitary geometry , 2020, Finite Fields Their Appl..

[27]  A. Brouwer,et al.  On the p-Rank of the Adjacency Matrices of Strongly Regular Graphs , 1992 .