Frames over finite fields: Equiangular lines in orthogonal geometry
暂无分享,去创建一个
[1] Alexander Barg,et al. Finite two-distance tight frames , 2014, 1402.3521.
[2] Tilen Marc,et al. There is no (95, 40, 12, 20) strongly regular graph , 2016, Journal of Combinatorial Designs.
[3] Dustin G. Mixon,et al. Steiner equiangular tight frames , 2010, 1009.5730.
[4] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[5] Tilen Marc,et al. There is no (75,32,10,16) strongly regular graph , 2015, Linear Algebra and its Applications.
[6] Shayne Waldron,et al. On the construction of equiangular frames from graphs , 2009 .
[7] D. E. Taylor. Regular 2‐Graphs , 1977 .
[8] K. Stohr. The Gap , 2019, Minding the Gap.
[9] Blake C. Stacey. Equiangular Lines , 2021, A First Course in the Sporadic SICs.
[10] Akihiro Munemasa,et al. The nonexistence of certain tight spherical designs , 2005 .
[11] Dustin G. Mixon,et al. Tremain equiangular tight frames , 2016, J. Comb. Theory, Ser. A.
[12] Dustin G. Mixon,et al. Equiangular tight frames with centroidal symmetry , 2015, 1509.04059.
[13] Mátyás A. Sustik,et al. On the existence of equiangular tight frames , 2007 .
[14] Dustin G. Mixon,et al. The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.
[15] L. Grove,et al. Classical Groups and Geometric Algebra , 2001 .
[16] Peter J. Cameron,et al. Strongly regular graphs , 2003 .
[17] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[18] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[19] A. A. Makhnev. On the Nonexistence of Strongly Regular Graphs with Parameters (486, 165, 36, 66) , 2002 .
[20] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[21] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[22] J. J. Seidel,et al. A SURVEY OF TWO-GRAPHS , 1976 .
[23] Dustin G. Mixon,et al. Fingerprinting With Equiangular Tight Frames , 2011, IEEE Transactions on Information Theory.
[24] Alan J. Hoffman,et al. On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..
[25] Arnold Neumaier,et al. New inequalities for the parameters of an association scheme , 1981 .
[26] Joseph W. Iverson,et al. Frames over finite fields: Basic theory and equiangular lines in unitary geometry , 2020, Finite Fields Their Appl..
[27] A. Brouwer,et al. On the p-Rank of the Adjacency Matrices of Strongly Regular Graphs , 1992 .