Radiation Damage Studies in Model Ferritic Alloys Using Micromagnetic Techniques

The related micromagnetic techniques of Barkhausen emission (BE) and magneto-acoustic emission (MAE) are used to study neutron damage effects in α-iron and iron—copper alloys following irradiation to 2.4 to 2.9 × 1019 n cm−2 (> 1 MeV) at 60 and 290 °C, respectively. The role of initial heat treatment and thermal ageing are also examined. 60 °C-nentron irradiation suppresses strong BE and MAE activity in annealed α-iron, and the behaviour is attributed to irradiation-induced dissolution of nitride precipitates and formation of interstitial solute-point defect complexes. The techniques exhibit sensitivity to thermally-induced copper precipitation in an Fe—0.7% Cu alloy and to 290 °C-irradiation and post-irradiation recovery in an Fe—0.2% Cu alloy. The BE and MAE response for the irradiated Fe—0.2% Cu alloy is interpreted in terms of a dislocation loop and an irradiated-indviced copper precipitate component to the damage structure. The potential of the techniques for monitoring irradiation effects in ferromagnetic systems is briefly considered. Die miteinander verknupften mikromagnetischen Methoden der Barkhausen-Emission (BE) und magneto-akustischen Emission (MAE) werden zur Untersuchung von Neutronendamage effekten in α-Eisen und Eisen—Kupferlegierungen nach einer Bestrahlung bis zu 2,4 bis 2,9 × × 1019 n cm−2 (>l MeV) bei 60 bzw. 290 °C benutzt. Die Rolle einer anfanglichen Warmebehandlung und thermischer Alterung wird ebenfalls untersucht. 60 °C-Neutronenbestrahlung unterdruckt in getempertem α-Eisen die starke BE- und MAE-Aktivitat und dieses Verhalten wird der strahlungsinduzierten Bildung von Nitridprazipitaten und der Bildung von Zwischengitterverun- reinigungen-Punktdefekt-Komplexen zugeordnet. Die Techniken zeigen eine Empfindlichkeit gegenuber thermisch-induzierter Kupferausfallung in einer Fe-0,7% Cu-Legierung und gegenuber 290 °C-Bestrahlung und Erholung in einer Fe-0,2% Cu-Legierung. Die BE- und MAE-response fur die bestrahlte Fe-0,2 % Cu-Legierung wird mit Versetzungsschleifen und bestrahlungsin- duzierten Kupferprazipitatkomponenten aus der Damagestruktur interpretiert. Die Moglichkeiten der Technik zur Verfolgung von Bestrahlungseffekten in ferromagnetischen Systemen wird kurz betrachtet.

[1]  J. Highton Influence of chemical composition and neutron irradiation on embrittlement of reactor pressure vessel steels , 1988 .

[2]  Ulrich Zimmermann,et al.  Positron Annihilation Studies on Neutron Irradiated Pressure Vessel Steels , 1987 .

[3]  R. Ranjan,et al.  Nondestructive evaluation of steels using acoustic and magnetic barkhausen signals—I. Effect of carbide precipitation and hardness , 1987 .

[4]  J. Kameda,et al.  Nondestructive evaluation of steels using acoustic and magnetic barkhausen signals—II. Effect of intergranular impurity segregation , 1987 .

[5]  G. Briggs,et al.  Magneto-acoustic and Barkhausen emission from domain-wall interactions with precipitates in Incoloy 904 , 1987 .

[6]  G. Briggs,et al.  Magneto-acoustic and Barkhausen emission: their dependence on dislocations in iron , 1987 .

[7]  C. Helm,et al.  The colloidal nature of phospholipid monolayers , 1987 .

[8]  M. G. Hetherington,et al.  A study of the precipitation of copper particles in a ferrite matrix , 1987 .

[9]  M. Jenkins,et al.  Dissolution of nitride precipitates in iron by low-dose neutron irradiation , 1987 .

[10]  G. Odette On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels , 1983 .

[11]  J. S. Perrin,et al.  Effects of radiation on materials , 1981 .

[12]  W. Soffa,et al.  Magnetic precipitation hardening in a semihard permanent magnet alloy , 1978 .

[13]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy , 1973 .

[14]  E. Little,et al.  Thermal activation parameters for low temperature deformation of alpha-hafnium , 1973 .

[15]  B. Eyre,et al.  The Geometry of Dislocation Loops Generated in Mild Steel by 1 MeV Electron Irradiation at 550°C , 1973 .

[16]  R. S. Nelson,et al.  The stability of precipitates in an irradiation environment , 1972 .

[17]  L. Brown,et al.  A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system , 1972 .

[18]  E. Little,et al.  Radiation-Hardening and Recovery in Mild Steels and the Effects of Interstitial Nitrogen , 1970 .

[19]  M. Downey,et al.  Neutron irradiation damage in molybdenum , 1965 .

[20]  A. Damask,et al.  Kinetics of carbon precipitation in irradiated iron—III. Calorimetry , 1964 .

[21]  H. Rieger,et al.  Effect of Lattice Defects on the Magnetization Curve of Ferromagnets , 1964 .