Quaternary structure, Mg2+ interactions, and some kinetic properties of the (β-galactosidase fromThermoanaerobacterium thermosulfurigenes EM1

[1]  R. E. Huber,et al.  GLU-416 of β-Galactosidase (Escherichia coli) Is a MG2+Ligand and β-Galactosidases with Substitutions for GLU-416 Are Inactivated, Rather than Activated, by MG2+ , 1996 .

[2]  B. Matthews,et al.  Three-dimensional structure of β-galactosidase from E. coli. , 1994, Nature.

[3]  R. E. Huber,et al.  Site-Directed Substitutions Suggest That His-418 of β-Galactosidase (Escherichia coli) Is a Ligand to Mg2+ , 1994 .

[4]  O. Poch,et al.  Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. , 1992, Gene.

[5]  W. D. de Vos,et al.  Leuconostoc lactis beta-galactosidase is encoded by two overlapping genes , 1992, Journal of bacteriology.

[6]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[7]  H. Bahl,et al.  Cloning and analysis of the beta-galactosidase-encoding gene from Clostridium thermosulfurogenes EM1. , 1991, Gene.

[8]  D. Scott,et al.  Expression and nucleotide sequence of the Clostridium acetobutylicum beta-galactosidase gene cloned in Escherichia coli , 1991, Journal of bacteriology.

[9]  C. Robert,et al.  Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus beta-galactosidase sequences. , 1991, Journal of general microbiology.

[10]  R. E. Huber,et al.  Site specific mutants of beta-galactosidase show that Tyr-503 is unimportant in Mg2+ binding but that Glu-461 is very important and may be a ligand to Mg2+. , 1990, Biochemical and biophysical research communications.

[11]  S. E. Mainzer,et al.  Expression and nucleotide sequence of the Lactobacillus bulgaricus beta-galactosidase gene cloned in Escherichia coli , 1989, Journal of bacteriology.

[12]  R. E. Huber,et al.  Strong inhibitory effect of furanoses and sugar lactones on beta-galactosidase Escherichia coli. , 1987, Biochemistry.

[13]  B. Hall,et al.  Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene. , 1985, Molecular biology and evolution.

[14]  M. Riley,et al.  Nucleotide sequence of Klebsiella pneumoniae lac genes , 1985, Journal of bacteriology.

[15]  R. E. Huber,et al.  Binding and reactivity at the "glucose" site of galactosyl-beta-galactosidase (Escherichia coli). , 1984, Archives of biochemistry and biophysics.

[16]  R. E. Huber,et al.  Interaction of divalent cations with beta-galactosidase (Escherichia coli). , 1979, Biochemistry.

[17]  P. Deschavanne,et al.  Conformational adaptability of the active site of beta-galactosidase. Interaction of the enzyme with some substrate analogous effectors. , 1978, The Journal of biological chemistry.

[18]  R. E. Huber,et al.  A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. , 1976, Biochemistry.

[19]  A. Fowler,et al.  Amino acid sequence of beta-galactosidase. IV. Sequence of an alpha-complementing cyanogen bromide peptide, residues 3 to 92. , 1975, The Journal of biological chemistry.

[20]  A. Fowler,et al.  Molecular basis of beta-galactosidase alpha-complementation. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Yon,et al.  Kinetic study of the activation process of -galactosidase from Escherichia coli by Mg 2+ . , 1972, European journal of biochemistry.

[22]  F. Celada,et al.  The activation of -galactosidase by divalent and monovalent cations. Transient- and steady-state studies. , 1971, European journal of biochemistry.

[23]  J. Garnier,et al.  pH Dependence of the Activity of β‐Galactosidase from Escherichia coli , 1971 .