An Explanation of Never-Special Assembly Changing Motions for 3–3 Parallel Manipulators

When the leg rods of a fully in-parallel manipulator are fixed in their lengths, it is usual that the device can be assembled in several distinct ways. Sometimes it happens that motion between such assemblies can take place such that the linkage is never at a special configuration; that is, a configuration where the moving-platform body acquires uncontrollable freedom relative to the base. The possibility of such motion has implications for control. Focusing on 3–3 devices, we present a geometric explanation of how these motions arise, and give a sufficient condition for their existence. For the 3–3 planar-motion device, we show that never-special assembly changing motions can be excluded by making platform and base triangles similar, and we conjecture that appropriate, perhaps identical, specialization for the octahedral manipulator has the same effect.

[1]  Jean-Pierre Merlet,et al.  Direct Kinematics and Assembly Modes of Parallel Manipulators , 1992 .

[2]  P. Wenger Classification of 3R positioning manipulators , 1998 .

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[5]  C. Gosselin,et al.  The direct kinematics of planar parallel manipulators: Special architectures and number of solutions , 1994 .

[6]  Charles W. Wampler FORWARD DISPLACEMENT ANALYSIS OF GENERAL SIX-IN-PARALLEL SPS (STEWART) PLATFORM MANIPULATORS USING SOMA COORDINATES , 1996 .

[7]  P. Giblin,et al.  Curves and singularities : a geometrical introduction to singularity theory , 1992 .

[8]  C. Gosselin,et al.  Solutions polynomiales au probleme de la cinematique directe des manipulateurs paralleles plans a trois degres de liberte , 1992 .

[9]  R. W. Daniel,et al.  Fundamental Limits of Performance for Force Reflecting Teleoperation , 1998, Int. J. Robotics Res..

[10]  S. Roberts On Three‐bar Motion in Plane Space , 1875 .

[11]  H. Whitney On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane Into the Plane , 1955 .

[12]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .

[13]  Jaehoon Lee,et al.  A Practical Quality Index Based on the Octahedral Manipulator , 1998, Int. J. Robotics Res..

[14]  A. Schoenflies,et al.  Geometrie der Bewegung in synthetischer Darstellung , 1886 .

[15]  Marc Renaud,et al.  Modelling and Control of a Modular, Redundant Robot Manipulator , 1989, ISER.

[16]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[17]  C. Innocenti,et al.  Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators , 1998 .

[18]  A. E. Samuel,et al.  A Dexterity Measure for the Kinematic Control of a Multifinger, Multifreedom Robot Hand , 1991, Int. J. Robotics Res..

[19]  K. H. Hunt,et al.  Structural Kinematics of In-Parallel-Actuated Robot-Arms , 1983 .

[20]  K. H. Hunt,et al.  The Octahedral Manipulator: Geometry and Mobility , 1998, Int. J. Robotics Res..

[21]  R. W. Daniel,et al.  A fast, robust solution to the Stewart platform forward kinematics , 1996, J. Field Robotics.

[22]  K. H. Hunt,et al.  Assembly configurations of some in-parallel-actuated manipulators , 1993 .

[23]  Kenneth J. Waldron,et al.  Direct kinematic solution of a Stewart platform , 1990, IEEE Trans. Robotics Autom..